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Statistical Learning Theory
Introduction

Section Lead TAs for this course:

• Ansh Sharma, Haoxu Huang, Patrick Shen, Yihui Hong,
Karine

Office Hours:

• Ansh: Mon 11:30am - 12:30pm ET

• Haoxu: Tues 11:00am - 12:00pm ET

• Patrick: Wed 4:00pm - 5:00pm ET

• Yihui: Thurs 3:00pm - 4:00pm ET

• Karine: Fri 1:00pm - 2:00pm ET

Location:

• Room 242 in CDS (60 5th Ave, New York, NY 10011)



Statistical Learning Theory
Motivation

In data science, we generally need to Make a Decision on a
problem.
To do this, we need to understand

• The setup of the problem

• The possible actions

• The effect of actions

• The evaluation of the results

How do we translate the problem into the language of
DS/modeling?



Statistical Learning Theory
Formalization

The Spaces
X : input space Y: outcome space A: action (decision) space

Prediction Function
A prediction function f gets an input x ∈ X and produces an
action a ∈ A:

f : X 7→ A

Loss Function
A loss function ℓ(a, y) evaluates an action a ∈ A in the context of
an outcome y ∈ Y:

ℓ : A× Y 7→ R



Statistical Learning Theory
Risk Function

Given a loss function ℓ, how can we evaluate the “average
performance” of a prediction function f ?

• To do so, we need to first assume that there is a data
generating distribution PX ,Y .

• Then the expected loss of f on PX ,Y will reflect the notion of
“average performance”.

Definition
The risk of a prediction function f : X 7→ A is

R(f ) = Eℓ(f (x), y)

It is the expected loss of f on a new sample (x , y) drawn from
PX ,Y .



Statistical Learning Theory
Finding ‘best’ function

Definitions

Hypothesis Class

F is the family of functions we restrict our model to be. Example:
Linear, quadratic, decision tree, two layer neural-net...

Bayes optimal predictor within F
f ∗F is ‘best’ function one can obtain within F .

Sample-optimal predictor

f̂n is the ‘best’ function one can obtain using the data given.

Learned predictor

f̃n is the function actually obtained using the data given.



Statistical Learning Theory
The Bayes Prediction Function

Definition
A Bayes prediction function f ∗ : X 7→ Y is a function that
achieves the minimal risk among all possible functions:

f ∗ ∈ argmin
f

R(f ),

where the minimum is taken from all functions that maps from X
to A.
The risk of a Bayes function is called Bayes risk.



Statistical Learning Theory
Finding the Bayes Optimal Classifier

Goal:
In a multi-class classification problem with class Y ∈ {1, 2, ..., n}
and features X , we want to find a classifier h(X ) = ŷ that
minimizes the expected loss (risk).

EY (I{y ̸=ŷ}) = EXEY |X (I{y ̸=ŷ}|X = x) (Law of total expectation)

= E[Pr(Y = 1|X = x)I{ŷ=2,3,...,n}]

+ E[Pr(Y = 2|X = x)I{ŷ=1,3,...,n}]...

+ E[Pr(Y = n|X = x)I{ŷ=1,2,3,...,n−1}]

Note:
This is minimized by simutaneously minimizing all terms of
expectation using the classifier h(x) = k with
argmaxkPr(Y = k|X = x) for each observation x .



Statistical Learning Theory
Finding the Bayes Optimal Classifier

• P(Y = 1|x) + P(Y = 2|x) + ...+ P(Y = n|x) = 1 by
complement rule of probability.

• The probability of error is P(Error |x) = 1− P(Correct|x)
• To minimize the error, we need to maxmize the probability of
being correct.

• Consequently, for any given observation x , the strategy that
minimizes risk is simply: Pick the class k that has the highest
posterior probability (i.e. argmaxkPr(Y = k|X = x))



Statistical Learning Theory
Finding the Bayes Optimal Classifier

• Pr(Y = 1|X = x) = 0.4, Pr(Y = 2|X = x) = 0.5,
Pr(Y = 3|X = x) = 0.1 (Y ∈ {1, 2, 3})

• Case 1 (ŷ = 1): Pr(Y = 1|X = x) · I{ŷ∈{2,3}} = 0.4 · 0 = 0,
Pr(Y = 2|X = x) · I{ŷ∈{1,3}} = 0.5 · 1 = 0.5,
Pr(Y = 3|X = x) · I{ŷ∈{1,2}} = 0.1 · 1 = 0.1
Total Risk at x=0.5 + 0.1 = 0.6

• Case 2 (ŷ = 2): Pr(Y = 1|X = x) · I{ŷ∈{2,3}} = 0.4 · 1 = 0.4,
Pr(Y = 2|X = x) · I{ŷ∈{1,3}} = 0.5 · 0 = 0,
Pr(Y = 3|X = x) · I{ŷ∈{1,2}} = 0.1 · 1 = 0.1
Total Risk at x=0.4 + 0.1 = 0.5 (smallest risk with highest
Pr(Y = k |x = X ))

• Case 3 (ŷ = 2): Pr(Y = 1|X = x) · I{ŷ∈{2,3}} = 0.4 · 1 = 0.4,
Pr(Y = 2|X = x) · I{ŷ∈{1,3}} = 0.5 · 1 = 0.5,
Pr(Y = 3|X = x) · I{ŷ∈{1,2}} = 0.1 · 0 = 0
Total Risk at x=0.4 + 0.5 = 0.9



Statistical Learning Theory
Error Decomposition



Statistical Learning Theory
Error Decomposition

Approximation Error

• Caused by the choice of family of functions or capacity of the
model. (ϵapprox = R(fF )− R(f ∗))

• Expand the capacity of the model.

Estimation Error

• Caused by finite number of data. (ϵest = (R(f̂n)− R(fF )))

• Obtain more data/add regularizer

Optimization Error

• Caused by not able to find the best parameters.
(ϵopt = R(f̃ )− R(f̂n))

• Try different optimization algorithms, learning rates, etc.



Statistical Learning Theory
Error Decomposition

Decomposition of “Excess Risk” (how much worse our final model
is compared to the perfect Bayes optimal)

R(f̃n)− R(f ∗) = ϵapprox + ϵest + ϵopt

= (R(fF )− R(f ∗))

+ (R(f̂n)− R(fF ))

+ (R(f̃n)− R(f̂n))



Statistical Learning Theory
Gradient Descent

Motivation:
Our goal is the find f̂n, the best possible model from given data
Naive approach: Take gradient of loss function, solve for
parameters that gives you 0.

• Computationally intractable

• Impossible to compute due to complex function structure

The optimal parameters for LR: β̂ = (X⊤X )−1X⊤Y
When X ’s dimension reaches the millions, the inverse is essentially
intractable.
But we do not need f̂n, a close f̃n is good enough for decision
making.
Therefore, instead of solving for the best parameters, we just need
to approximate it well enough.



Statistical Learning Theory
Loss Landscape for Classical Neural Networks

Hao Li, et.al. Visualizing the Loss Landscape of Neural Nets. NeurIPS 2018.



Statistical Learning Theory
Gradient Descent

Idea:

• Given any starting parameters, the gradient indicates the
direction of local maximal change.

• If we obtain new parameters by moving old parameter along
its gradient, the new ones will give smaller loss (if we are
careful).

• We can repeat this procedure until we are happy with the
result.



Statistical Learning Theory
Directional Gradient Recap (Fréchet derivative)

• We say a function f : Rn → R is differentiable at x ∈ Rn if

lim
v→0

f (x + v)− (f (x) + gT v)

∥v∥2
= 0,

is first-order accurate (Fréchet differentiable), for some
gradient vector g ∈ Rn and displacement vector v ∈ Rn

• If it exists, this g is unique and is called the gradient of f at x
with notation

g = ∇f (x)

• It can be shown that

∇f (x) =

∂x1f (x)
...

∂xn f (x)





Statistical Learning Theory
Contour Graphs

Imagine we are solving a simple linear regression problem:
y = θ0 + θ1x with loss function:

J(θ0, θ1) =
∑
n

(yi − (θ0 + θ1xi ))
2



Statistical Learning Theory
Negative Gradient Steps
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Statistical Learning Theory
Negative Gradient Steps



Gradient Descent
Gradient Descent

Goal: find θ∗ = argminθ J(θ)

θ0 := [initial condition] (can be randomly chosen)
i := 0
while not [termination condition] do
compute ∇J(θi )
α := [choose learning rate at iteration i ]
θi+1 := θi − α∇J(θi )
i := i + 1

end while
return θi



Gradient Descent
First-order Gradient Descent

Objective: only calculating and using gradient information ∇θL(θ)
on deciding where to move on loss landscape.

Pros: Computational Efficiency, Low Memory Footprint, More
Scalable

Cons: Slow Convergence, Struggle with Curvature, Can stuck at
Saddle Points

Example Algorithms: SGD, SGD + momentum, Adam, AdamW,
RMSProp



Gradient Descent
Second-order Gradient Descent

Objective: calculating and using both gradient information
∇θL(θ) and curvature information ∇2

θL(θ) (i.e. Hessian approx) on
deciding where to move on loss landscape.
(e.g. θi+1 = θi − α(∇2L(θi ))

−1∇L(θi ))

Pros: Fast Convergence, Escapes Saddle Points, Curvature
Informed

Cons: Computational Expense (inverting the Hessian matrix is
O(n3), Memory Explosion (storing full hessian matrix)

Example Algorithms: Newton’s method, Quasi-Newton
(L-BFGS), Newton Schulz, Muon



Things to review

Calculus

• Gradients, taking (partial) derivatives

Linear Algebra

• Matrix computation, matrix derivatives

• Example: compute ∂xTAx
∂x , where A is a matrix and x is a

vector

Suggested textbooks on Course Website
(https://nyu-dsga-1003.github.io/sp26/)

https://nyu-dsga-1003.github.io/sp26/

