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Staff & Office Hours

Staff

Instructors

Nicholas Tomlin

n.tomlin@nyu.edu

Hi! I'm a current faculty fellow at NYU, working on LLMSs, reasoning, and interaction.
In my spare time, | enjoy playing chess, eating bagels, and entertaining my cat Coco.
Office Hours: Wednesdays 3:00pm - 4:00pm (CDS 617)

Sam Deng
samuel.deng@nyu.edu

Hi! I'm currently an adjunct instructor at NYU and final-year PhD student at Columbia,

working on topics in machine learning theory. In my free time, | love going to the
movies and running.

Office Hours: Tuesdays 5:00pm - 6:00pm (after class in CDS 242); Wednesdays
1:00pm - 2:00pm (CDS 242)

Teaching Assistants

Ansh Sharma

¢Course Calendar

This page includes the course calendar, which will include all the important and recurring dates for
the course, including office hours. If needed, we will reflect changes here.
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Filter - Samuel Deng STAr 1 * © 119
18 hours ago in Announcements UNPIN STAR WATCH VIEWS
) Welcome to DS-GA 1003! g
Announcements Samuel Deng sTAFF  18h 1 @ Hi everyone!
Last Week 1 This is a start of semester announcement just to make sure that a couple
things are on your radar before our lecture on Tuesday. Feel free to start
= Problem Set 0 posting questions on Ed if you have any!

HW 0 Samuel Deng sTAFF  18h 1
e Ed. This is the main discussion board/communications channel of the

course. Let this be your first stop to post questions/answer
questions/stay updated with the course -- the course staff will be
closely monitoring it. We will not be using Brightspace/emails for
communication/materials. All announcements on Ed will
automatically send an email and you should be automatically enrolled
in the course if you are on the course Brightspace.

e Course website. We will be posting all the material for this course
(lectures, labs, problem sets, syllabus, etc.) on the course website. It's
pending a couple more changes before the start of the semester
Tuesday, but please take a look to get acquainted with the
syllabus/structure of the course.

e PS 0. An introductory calibration problem set was released several
days ago with the first and only Brightspace announcement. It's worth
zero points and is just meant to get you acquainted with the
resources/tools of the course. It shouldn't take long -- please complete
itand

e Problem Set 1. The first problem set of the course, PS 1, will be
released on Tuesday right before lecture (stay tuned for an
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Lectures: Tuesdays, 2:45-4:45PM, 36 E 8th St (Cantor Film Ctr) Room 200

Labs (mandatory!): Thursday, 7:10-8PM, 238 Thompson St (GCASL) Room C95
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You will have roughly two weeks to complete each homework once it is assigned

Late policy:

* You have 6 late days in total across the semester; it you want to submit 1-2 days late but have
already used your late days, you will incur a 20% grade penalty per day

e However, you can use a maximum of 2 late days per homework. Gradescope will close 48
hours after the assignment deadline

* You can drop your lowest homework grade
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In this section, we will post the biweekly homeworks for the semester. Check back here for the latest
problem set!

Homework 0

Material: Submitting & typesetting your homework psO0-submission.zip, psO.pdf
Release: Monday, January 12th, 7:30 PM ET

Due: Friday, January 23rd, 11:59 PM ET

Homework 1

Material: Error decomposition and regression ps1-statlearning.zip, ps1.pdf
Release: Tuesday, January 20th, 2:30 PM ET

Due: Tuesday, February 3rd, 11:59 PM ET
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Jan 23rd: Homework 0 due
Feb 2nd: last day to add/drop classes on Albert

Feb 3rd: Homework 1 due
Feb 28th: project groups formed

Mar 10th: midterm, in-class
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Should | take this class?

Yes, if:

* You are a CDS MS or PhD student
* You have familiarity with linear algebra, calculus, and basic programming

e You have taken DS-GA 1001 and DS-GA 1002

* You are available on Tuesday, March 10th from 2:45-4:45PM

f you think you have equivalent experience but haven’t met the prerequisites: please email us
your transcript and relevant course syllabi and we can review your waiver request
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Enrollment priority

Currently: 154 students (max of 200)
Priority order for registration:

® Data science graduate students (MS and PhD)

* Non-data science PhD students: please ask your advisor to reach out to Tina Lam
(tina.lam@nyu.edu) to request your enrollment in this course

e MS students from other departments with appropriate prerequisites: registration should now
be open. If you have issues, please contact cds-masters@nyu.edu
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What's this course?

Prerequisites

a Linear Algebra

b Multivariable Calculus
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Additional Information

NOTE: This site is still under construction and will be undergoing changes until the first week of class,

on January 20th! Please stay tuned for updates and monitor your email for communication about the

course.

What's this course?

This course is a graduate-level introduction to machine learning. We try to present machine learning

as a story where many algorithmic technigues drop out of a common statistical learning framework.

The course covers a wide variety of topics in machine learning and statistical modeling. While
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Outline

Course Overview and Logistics
Introduction to Machine Learning
Statistical Learning Setup

Statistical Learning: Bayes Risk

Statistical Learning: Empirical Risk and ERM
Statistical Learning: Hypothesis Class

Excess Risk Decomposition and Three Types of Error
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Given a dataset of photos of cats, predict the breed of a cat.

— “Siamese”

By Karin Langner-Bahmann, upload von Martin Bahmann - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/
index.php?curid=3020045
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Given a dataset of music listeners and songs, predict whether a user likes a song.

/‘\'

By https://open.spotify.com/album/26ZV7BuCkdY3INKETgEJOe?si=-5kn-WvIQsesSQGof-BD3w, Fair use, https://en.wikipedia.org/w/index.php?curid=4897516
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Given a written Chinese sentence, return the English translation.

X Text M Images B Documents BN Websites

Detect language English Chinese (Simplified) Filipino v Phond
= 7 -
Ni hao shijie
) 4/ 5,000 v
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Given a dataset of meteorological measurements, forecast the temperature.

humidity wind cloud onth pre.ssure
(mph) cover (in)
33% / 2 march 29

30
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Given a written English text passage, predict the (“most probable”) next word.

It is a truth universally acknowledged, that a single man in possession
of a good

...fortune, must be in want of a wife. /\ ”fO rt U n e "

— Jane Austen, Pride and Prejudice (1813)

That's the famous opening line — would you like me to continue the paragraph, or do a short literary

analysis of why this sentence is so iconic?

O 6 LS -
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"Traditional Programs” vs. Machine Learning

Many problems are ditficult to “program by hand.”
Image recognition, language processing, product recommendation, etc.

Machine learning approach: construct an algorithm that learns Gatomatical
experience, and output a program, typically to solve a prediction problem:

y from data or

Given an input x, predict the output y.

32
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"Traditional Programs”
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Suppose we want to classify handwritten digits (example: MNIST dataset).

o

How would you handwrite code to distinguish between digits?
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Example: Image Classification

Binary Classification

Given an input x, predict the output .

Input x: 1000x1000 pixel image of a cat or dog.

Output y: “CAT" or "DOG”

his is a binary classification problem, where y is one of two possible outputs.
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Example: Medical Diagnosis

Multiclass Classification

Given an input x, predict the output y.
Input x: Symptoms of an individual patient (fever, cough, nausea...)
Output y: Diagnosis (pneumonia, flu, cold, bronchitis, ...)

This is a multiclass classification problem, where y is tfrom a discrete set of possible outputs.

Pr(pneumonia) = 0.7

Pr(flu) = 0.1
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Example: Stock Price Prediction

Regression

Given an input x, predict the output .

Input x: History of stock prices, volume of stock.

Output y: Price of a stock at the close of the next day.

This is a regression problem, where y is a continuous output.
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Machine Learning Approach
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Suppose we want to classity handwritten digits (example: MNIST dataset).

Gather a labeled dataset of inputs and outputs.

Use this data to “automatically” find the best rule for classitying digits.
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Supervised Machine Learning
A Definition

D, := {(x",y"), &, y), ..., ™, y™))
The study of making predictions from data.
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Rd

/\
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Supervised Machine Learning

A Definition
D, := {(xM, yD), x®, y@), .., ™, y™)}
The study of making predictions from data.
R
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Supervised Machine Learning
A Definition

D, = {(xV,yD), x®,y@), ..., x™, y™)}
The study of making predictions from data.

<o

@
!

—
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Supervised Learning

Basic Pipeline

D, := {(xD,yD), @, y@), .., (x™, y)}

l

o

~—
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Supervised Learning

Basic Pipeline

1. Collect training dataset, a collection of D, := {(xD, yDy, (x®, y@y, . (x™, y))
labeled input-output pairs.

l

<

~—
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Supervised Learning

Basic Pipeline

1. Collect training dataset, a collection of D, := {(xD, yDy, (x®, y@y, . (x™, y))
labeled input-output pairs. _ — U |
}\‘ % V& @‘@
2. Decide on the template of the hypothesis $
mapping that will map inputs to actions. ~——
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Supervised Learning

Basic Pipeline

1. Collect training dataset, a collection of
labeled input-output pairs.

2. Decide on the template of the hypothesis

mapping that will map inputs to actions.

3. A learning algorithm takes the labeled
training data as input and outputs a

hypothesis.
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Supervised Learning

Basic Pipeline

1. Collect training dataset, a collection of
labeled input-output pairs.

2. Decide on the template of the hypothesis
mapping that will map inputs to actions.

3. A learning algorithm takes the labeled
training data as input and outputs a
hypothesis.

4. The hypothesis predicts on new, unseen
data which we hope it does well on, under a
notion of loss.
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Supervised Learning

Basic Pipeline

1. Collect training dataset, a collection of D, := {(xD, yDy, (x®, y@y, . (x™, y))
labeled input-output pairs.

|

Representation @
2. Decide on the template of the hypothesis

mapping that will map inputs to actions. ~——

3. A learning algorithm takes the labeled
training data as input and outputs a
hypothesis.

4. The hypothesis predicts on new, unseen
data which we hope it does well on, under a
notion of loss.
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Supervised Learning

Basic Pipeline

1. Collect training dataset, a collection of D, := {(xD, yDy, (x®, y@y, . (x™, y))
labeled input-output pairs.

|

Representation @
2. Decide on the template of the hypothesis

mapping that will map inputs to actions. ~——

3. A learning algorithm takes the labeled  Optimization
training data as input and outputs a
hypothesis.

4. The hypothesis predicts on new, unseen
data which we hope it does well on, under a
notion of loss.
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Supervised Learning 9 peind t Lawnins

Basic Pipeline

1. Collect training dataset, a collection of D, := {(xD, yDy, (x®, y@y, . (x™, y))

labeled input-output pairs. |
Representation T

2. Decide on the template of the hypothesis ?‘

mapping that will map inputs to actions. ~——

3. A learning algorithm takes the labeled  Optimization
training data as input and outputs a
hypothesis.

4. The hypothesis predicts on new, unseen  Generalization
data which we hope it does well on, under a
notion of |loss.
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Outline

Course Overview and Logistics
Introduction to Machine Learning
Statistical Learning Setup

Statistical Learning: Bayes Risk

Statistical Learning: Empirical Risk and ERM
Statistical Learning: Hypothesis Class

Excess Risk Decomposition and Three Types of Error
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Inputs, Outcomes, and Evaluation

The Basic Prediction Problem

The “template” of the problems we care about follow this structure:

1. Observe aninputx € X.
2. Take an actiona € .

3. Observe the true outcome y € 7.

4. Evaluate the actions in relation to the outcome.

48
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Input Space
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Inputs, Outcomes, and Evaluation
Input Space

A is the input space (aka feature space), where x € & is an input.

In many cases, X = R4 d-dimensional Euclidean space.

Example: Measurements in an individual’s medical exam (height, weight, BP, etc.)

Example: Pixelsin a 1,024x1,024 image.

Example: Words in a document of English text.

The task of finding good features for a task is known as feature engineering.
Neural networks (latter half of semester) can be seen as “automated feature engineers.”
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Inputs, Outcomes, and Evaluation

Outcome Space

Y is the outcome space (aka label space), where y € % is outcome/label.

In many cases, % can be encoded as a single number.

Example: % = {—1,+ 1} (e.g. yes/no, cat/dog, etc.) in binary classification.

Example: % = {1,2,...,k} (e.g. English word, breed of cat, etc.) in multiclass classification.

Example: % = R (e.g. day's temperature, stock price, etc.) in regression.
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Inputs, Outcomes, and Evaluation
Action Space

o is the action space, where a € & is an action.

Generic term for what is produced by our system (in many cases, a prediction).
In many cases, we will set o = ¥

Example: Produce a —1/1 classitication (binary classification).

Example: Reject hypothesis that 8 = 0 (classical statistics).

Example: Prediction of storm location in 3 hours.

Example: Written English text (image captioning, speech recognition, translation).
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Inputs, Outcomes, and Evaluation

Evaluation (Loss Functions)

A loss function 7 : of X % — R measures the “badness” of action a with respecttoy € ¥%.

(a,y) = £(a,y)

By convention, smaller loss is better, and loss is usually non-negative.
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Loss Function Examples

C[qsst‘ﬁ'CJaHM
Example. ¥ = {—-1,+ 1} or % ={1,...,k} and & = ¥%. Areasonable loss is zero-one loss.
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Wdicator fvmohov .
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Loss Function Examples

Example. ¥ = {—-1,+ 1} or % ={1,...,k} and & = ¥%. Areasonable loss is zero-one loss.

C(a,y) = {1 ta#y or, shorthand: 2(y,y) := 1{a # y}

0O otherwise

Example. % = R and of = %. A reasonable loss is the squared loss.

f(j},Y) — (Cl _Z)2°
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Inputs, Outcomes, and Evaluation

The Basic Prediction Problem
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Inputs, Outcomes, and Evaluation

The Basic Prediction Problem

The “template” of the problems we care about follow this structure:

1. Observe aninputx € X.
2. Take an actiona € .

3. Observe the true outcome y € 7.

4. Evaluate the actions in relation to the outcome.
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Inputs, Outcomes, and Evaluation

The Basic Prediction Problem

The “template” of the problems we care about follow this structure:

1. Observe an input x e 9. We will construct prediction functions to do this.

2. Take an actiona € .

3. Observe the true outcome y € 7.

4. Evaluate the actions in relation to the outcome.
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Hypothesis
Definition & Goal
cw '
A hypothesis (aka predictor/prediction function) is a function h : & — & that takes inputs/
features x and maps to an action A(x).
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Hypothesis

Definition & Goal

A hypothesis (aka predictor/prediction function) is a function h : & — & that takes inputs/
features x and maps to an action A(x).

The loss of action a in context of y: £(a, y)

The loss of action h(x) in context of y: £(h(x), y)
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@ and consider: What is random in this problem?
Input/output pairs (x, y) are random variables from joint distribution Pg-,,.
The inputs x are random variables from marginal distribution Pq..

For any given x, the y are random variables from the conditional distribution Py,

For a fixed hypothesis &, the Ios*é(h(x),y) ‘s a random variable

TG -T""
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But how can we evaluate h over all ot ' X Y7

he risk of a hypothesis h : & — o is the expected loss of h over Py o/
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58



Statistical Learning Setup

Summary of Characters So Far

59



Statistical Learning Setup

Summary of Characters So Far

1. Observe aninputx € X

59



Statistical Learning Setup

Summary of Characters So Far

1. Observe aninputx € X

2. Predictan actiona € .

59



Statistical Learning Setup

Summary of Characters So Far

1. Observe aninputx € X

2. Predictan actiona € .

3. Observe the true
outcomey € ¥.

59



Statistical Learning Setup

Summary of Characters So Far

1. Observe aninputx € X

2. Predictan actiona € .

3. Observe the true
outcomey € ¥.

4. Evaluate the actions in
relation to the outcome.



Statistical Learning Setup

Summary of Characters So Far

T~

1. Observe aninputx € X.

2. Predictan actiona € .

3. Observe the true
outcomey € ¥.

4. Evaluate the actions in
relation to the outcome.

59



Statistical Learning Setup

Summary of Characters So Far

T~

1. Observe aninputx € 4.  is the input space (e.g. RY, pixels, words).

2. Predictan actiona € .

3. Observe the true
outcomey € ¥.

4. Evaluate the actions in
relation to the outcome.

59



Statistical Learning Setup

Summary of Characters So Far

T~

1. Observe aninputx € 4.  is the input space (e.g. RY, pixels, words).

2. Predictan actiona € . Y is the output space (e.g. {0,1} or R).

3. Observe the true
outcomey € ¥.

4. Evaluate the actions in
relation to the outcome.

59



Statistical Learning Setup

Summary of Characters So Far

T~

1. Observe aninputx € 4.  is the input space (e.g. R?, pixels, words).
2. Predictan actiona € . Y is the output space (e.g. {0,1} or R).
3. Observe the true o is the action space (e.g. prediction of y, some decision).

outcomey € ¥.

4. Evaluate the actions in
relation to the outcome.

59



Statistical Learning Setup

Summary of Characters So Far

T~

1. Observe aninputx € 4.  is the input space (e.g. R?, pixels, words).
2. Predictan actiona € . Y is the output space (e.g. {0,1} or R).
3. Observe the true o is the action space (e.g. prediction of y, some decision).

outcomey € ¥.
h: X — o isahypothesis to generate action A(x).

4. Evaluate the actions in
relation to the outcome.

59



Statistical Learning Setup

Summary of Characters So Far

T~

1. Observe aninputx € 4.  is the input space (e.g. R?, pixels, words).
2. Predictan actiona € . Y is the output space (e.g. {0,1} or R).
3. Observe the true o is the action space (e.g. prediction of y, some decision).

outcomey € ¥.
h: X — o isahypothesis to generate action A(x).

4. Evaluate the actions in

relation to the outcome. Evaluate h with loss function 7 : of X % — R.

59



Statistical Learning Setup

Summary of Characters So Far

T~

1. Observe aninputx € 4.  is the input space (e.g. R?, pixels, words).
2. Predictan actiona € . Y is the output space (e.g. {0,1} or R).
3. Observe the true o is the action space (e.g. prediction of y, some decision).

outcomey € ¥.
h: X — o isahypothesis to generate action A(x).

4. Evaluate the actions in

relation to the outcome. Evaluate & with loss function 7 : o/ X % — R.

I (h(x), y) evaluates h on (x, y)i w,\,\e

C oy )

Vow

59


Deng, Samuel


Statistical Learning Setup

Summary of Characters So Far

T~

1. Observe aninputx € 4.  is the input space (e.g. R?, pixels, words).
2. Predictan actiona € . Y is the output space (e.g. {0,1} or R).
3. Observe the true o is the action space (e.g. prediction of y, some decision).

outcomey € ¥.
h: X — o isahypothesis to generate action A(x).

4. Evaluate the actions in

relation to the outcome. Evaluate h with loss function ¢ : o/ X ¥ @

£(h(x),y) evaluates h on (x, y).
P
R(h) = —(x,y)NP%Xy[f(h(x),y)] is risk of A.

59


Deng, Samuel

Deng, Samuel

Deng, Samuel


Statistical Learning Setup

Summary of Characters So Far

T~

1. Observe aninputx € 4.  is the input space (e.g. R?, pixels, words).
2. Predictan actiona € . Y is the output space (e.g. {0,1} or R).
3. Observe the true o is the action space (e.g. prediction of y, some decision).

outcomey € ¥.
h: X — o isahypothesis to generate action A(x).

4. Evaluate the actions in

relation to the outcome. Evaluate h with loss function 7 : of X % — R.

£(h(x),y) evaluates h on (x, y).

R(h) =

[£(h(x),y)] is risk of A.

- (xvy)NPSl"X?

59



Outline

Course Overview and Logistics
Introduction to Machine Learning

Statistical Learning Setup

Statistical Learning: Bayes Risk
Statistical Learning: Empirical Risk and ERM
Statistical Learning: Hypothesis Class

Excess Risk Decomposition and Three Types of Error

60


Deng, Samuel

Deng, Samuel


Minimizing Risk
What's the smallest possible risk?
dl s the smallest pPpossiIDIle IS \’M-.

V
R(h) := -<x,y>N@[f<h<x>,y>]

OQur ultimate goal will typically be to minimize this quantity!

EL uvxce.%ﬂ = S LU, 1) $rm)
%9

EL LU ) = 2 Lowen 1) Prlx 1)
xrY
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h
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h

where the minimum is taken over all possible functions from & to .

The risk of h* is called the Bayes risk. —* @ C ‘\")
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—> R(h) = Pr(h(x) # y).
Therefore, the Bayes hypothesis returns the most likely label:

() = {1 f Pr(y=1]x) > 1/2

0 otherwise

Minimizing R(h) over every possible function allows us to define h* “pointwise” forx € 2.
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What's the smallest possible risk?

R(h) .= _(an)NP%xy [f(h(x)a y)]
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Minimizing Risk

What's the smallest possible risk?

R(h) .= _(an)NP%xy [f(h(x)a y)]
Our ultimate goal will typically be to minimize this quantity!

Problem: We don’t know what Pg- 4, is in a machine learning problem!

But we assume that we have a dataset of i.i.d. samples:

Dn L= {(x(l), y(l)), cees (x(n)a y(n))}
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It z;,...,2,are i.i.d. random variables with expected value E[z], then

lim — Z z; = [E[z], with probability 1.
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n | . .
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b
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Empirical Risk

Definition

Let D, = (D yWDy L (x ™, y™Y)Y be drawn i.i.d. from Poyy.

he empirical risk ot h : & — of with respectto D, is

R | . .
_ - )y ()
R,(h) =~ i§=1j, £(h(x), y®)

By the strong law of large numbers,

lim ﬁn(h) = R(h) almost surely.

n— oo

But, in practice, we only have a finite sample.
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Empirical Risk Minimization

Definition

The empirical risk of h : & — & with respectto D, is

R ] < . .
_ - OO
R,(h) =~ i§=1j, £(h(x®), y0).

he empirical risk minimizer (ERM) (over all functions h : & — &) is a function h satistying

h e arg min I?n(h).
h

s this a good proxy?

In an ideal world, we want the Bayes hypothesis:

h* € arg min R(h).
h
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Po = Unif([0,1]) and Y = 1 always.

Draw i.i.d. sample of size n = 3:
D, = {(0.25,1),(0.5,1),(0.75,1)}.
Under £(y,y) = 1{y # vy} (zero-one loss):

) = {1 if x € {0.25,0.5,0.75}

0 otherwise

A S ) -
R, (h) = ‘7[; 2 KL (x4

¢ =1\
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Empirical Risk Minimization

Example

Po = Unif([0,1]) and Y = 1 always.

Draw i.i.d. sample of size n = 3:
D, = {(0.25,1),(0.5,1),(0.75,1)}.

Under (3,y) = (§ — y)* (squared loss):
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Example: Gap with true risk
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Empirical Risk Minimization

Example: Gap with true risk

0 otherwise

) — {1 if x € {0.25,0.5,0.75)

Empirical risk under zero-one loss:
R (] I 3 (@ (1)
R (h)y=— ) 1{h(x" 71 =0
() 321, (h(x®) # y)
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Empirical Risk Minimization

Example: Gap with true risk

) — {1 if x € {0.25,0.5,0.75)

0 otherwise

Empirical risk under zero-one loss:
R (] I 3 (@ (1)
R (h)y=— ) 1{h(x" 71 =0
() 321, (h(x®) # y)

True risk under zero-one loss:

R(h) = E[1{h(x) # y}] = Pia%(x) #y) =1

Vsl S

son HAWNS,
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Empirical Risk Minimization

What went wrong?

D, = {(0.25,1),(0.5,1),(0.75,1)}

) — {1 if x € {0.25,0.5,0.75}

0O otherwise

This failed spectacularly because h just memorized the data.
In ML, we want our hypotheses to generalize from training data to new data.

In order to do this, we need to smooth things out:

Model how information is structured in input space & to unobserved parts of 2!
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Hypothesis Class A= gerl3

Definition

A hypothesis class is a set of functions # C o+ where we will search for .

Hypothesis class #
h: T — o

Class of all functions, of*.

/8
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Hypothesis Class h: X 2 ¢2,\5

Example

h(x) =172 h(x) = sin(x,) + 310 — x,x;,
‘ ‘

h(x) = .8x; + .2x, + .2x; + 4

79


Deng, Samuel


Hypothesis Class

Example

h(x) =172 h(x) = sin(x,) + 310 — x,x;,
‘ ‘

2L = R3 with x € & encoded as
x = (madterm, hours studied, hours slept).

¢
h(X) — .8x1 + .2)(:2 + .2X3 + 4
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Example
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L =R, withx € & encoded as :
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o = R, where a € ¢ is final exam score.
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%all
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Hypothesis Class

Example
h(x) =72 h(x) = sin(x,) + 310 — x,x;,

A A

2 = R, with x € & encoded as

x = (midterm, hours studied, hours slept). é
%COHSt %hn

A =R, where a €  is final exam score.
@

Possible hypothesis classes: .
K const = (X b:beR} “Lx) s\ Z a1

i
h(.X) — .8X1 + .2.X2 + .2.X3 + 4
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Hypothesis Class

Example
h(x) =72 h(x) = sin(x,) + 310 — x,x;,

A A

2 = R, with x € & encoded as

x = (midterm, hours studied, hours slept). é
%const %lin

A =R, where a €  is final exam score.
@

Possible hypothesis classes: .
K const = (X b:beR} Z a1

v
%lin = {X > WT)C+I? W E R3,b = R} h(x) = .8x;+ 2x, + 2x;+ 4
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Hypothesis Class

Example
h(x) =72 h(x) = sin(x,) + 310 — x,x;,
A A
2 = R, with x € & encoded as
x = (midterm, hours studied, hours slept). » é
%const lin
A =R, where a €  is final exam score.
®
Possible hypothesis classes: .
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;
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Empirical Risk Minimization
Example:

const

Po = Unif([0,1]) and Y = 1 always.
D, = {(0.25,1),(0.5,1),(0.75,1)}.

) = {1 if x € {0.25,0.5,0.75}

0 otherwise

ERM over # ={x—b:beR}:

const

)iz(x)zl l
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Hypothesis Class

Definition

A hypothesis class is a set of functions # C o+ where we will search for .

Fixed before the learning process.
Encodes assumptions about the relationship of x to y.

Should be easy to work with (i.e. we have efficient algorithms to search over ).
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Risk Minimization
With a hypothesis class

The empirical risk minimizer (ERM) i@s a function h satistying

h € argmin R (h).
he#

The risk minimizer in % is a function & satisfying

h>, € arg min‘ _I.Q(_h_) "\’VO‘Q {2‘.5"(

he#H

The Bayes hypothesis A* is a function with minimal risk among all functions

h* € arg min R(h)
h

82
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Outline

Course Overview and Logistics
Introduction to Machine Learning
Statistical Learning Setup

Statistical Learning: Bayes Risk

Statistical Learning: Empirical Risk and ERM
Statistical Learning: Hypothesis Class

Excess Risk Decomposition and Three Types of Error
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Excess Risk

Definition

R(h%) — R(h¥)

All functions

R(h,) — R(h%)
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Excess Risk

Definition

h* € argmin
h

= (0,Y)~Paxy [f(h(x) Y )]

R(h)

34

R(h,) — R(h%)

R(h%) — R(h¥)

All functions



Excess Risk

Definition

R(h%) = R(h¥)

h* € argmin E . p,  |C(h(x), )
h .

R(h)

hi € argmin E ) p  |£(A(X), )]
he#X

R(h)

All functions

R(h,) = R(h)

34



Excess Risk

Definition

R(hZ,) — R(h*)

h* € argmin E ) p, £ (h(x), y)]

h
- H
h* € argmin E [£(h(x), y)] . @
o (X.y)~ P&"xy . T YR AN A e i
he#Xt )
S— R(h)
- 1 « . .
h, € argmin — Y £(h(x?), y?) All functions
he n i=1

R, (h)

R(h,) — R(hZ)

34
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Excess Risk

Definition

h* € argmin E ) p £ (h(x), y))
h \

R(h)

h%, € argmin Ei ) p £ (h(x), y))
hew

N

R(h)

n 1 < . .
h € argmin — Z £(h(x®), y®)
he#H n i=1

R, (h)

The excess risk of i1 is how far & is from h*:

R(h) — R(h*™).

34

R(hZ,) — R(h*)

All functions

R(h,) — R(h%)
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Excess Risk

Decomposition

R(h%) — R(h¥)

All functions

R(h,) — R(h%)
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Excess Risk

Decomposition

R(h%) — R(*)

The excess risk of i is how far i is from h*:

R(h) — R(h™).

All functions

R(h,) — R(h%)
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Excess Risk

Decomposition

R(h%) — R(*)

The excess risk of i is how far i is from h*:

R(h) — R(h™).

Excess risk of ERM /1,

All functions

R(h,) — R(h%)
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Excess Risk

Decomposition

The excess risk of i is how far h is from h*:
R(h) — R(h*).

Excess risk of ERM /1,

R(h,) — R(h*) = R(h,) — R(h%) + R(h%) — R(h*)

est. error approx. error

R(h,) —
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Excess Risk

Decomposition

The excess risk of i is how far h is from h*:
R(h) — R(h*).

Excess risk of ERM /1,

R(h,) — R(h*) = R(h,) — R(h%) + R(h%) — R(h*)

est. error approx. error

Estimation error is from using finite training
as a proxy for risk (a generalization issue).
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Excess Risk

Decomposition

The excess risk of i is how far h is from h*:
R(h) — R(h*).

Excess risk of ERM /1,

R(h,) — R(h*) = R(h,) — R(h%) + R(h%) — R(h*)

est. error approx. error

Estimation error is from using finite training
as a proxy for risk (a generalization issue).

Approximation error is from our choice of
class # (a representation issue).

85
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Estimation Error

Details

R(h%) — R(h¥)

All functions

R(h,) — R(h%)

386



Deta | IS F"\“ do/\ & R(h%) — R(h*)

The estimation error R(@n) R(h;}) is the

error incurred by usi inite sample D,

. H

to obtain h,,. :
h h3 B
Q... .;* ............

All functions

R(h,) — R(h%)
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Estimation Error
Details

R(h%) — R(h*)

The estimation error R(]/;tn) — R(h;}) is the

error incurred by using a finite sample D,
to obtain A,

This is a random variable (why)? | " =

All functions

R(h,) — R(h%)
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Estimation Error

Details

The estimation error R(]/;tn) — R(h;}) is the

error incurred by using a finite sample D,
to obtain A,

This is a random variable (why)?

Typical
data), t

y, when n — oo (infinite training

ne estimation error goes to zero.

386

R(h,) — R(h%)

R(hZ,) — R(h*)

All functions



Estimation Error

Details

The estimation error R(]/;tn) — R(h;}) is the

error incurred by using a finite sample D,
to obtain A,

This is a random variable (why)?

Typical
data), t

y, when n — oo (infinite training

We expect that estimation error
increases with larger Z .

ne estimation error goes to zero.
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Estimation Error
Details

R(h%) — R(h¥)

The estimation error R(]/;tn) — R(h;}) is the

error incurred by using a finite sample D, »
to obtain A,

This is a random variable (why)? | " =

Typically, when n — oo (infinite training
data), the estimation error goes to zero.

All functions

We expect that estimation error
increases with larger Z'. R(h,) = R(h)

Very rough intuition: a “variance” term.
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Estimation Error
Details

The estimation error R(]/;tn) — R(h;}) is the

error incurred by using a finite sample D,
to obtain A,

This is a random variable (why)?

Typically, when n — oo (infinite training
data), the estimation error goes to zero.

We expect that estimation error
increases with larger Z .

‘/\

\/ery rough intuition: a “variance” term. We will come back to the tension this has with
modern machine learning practice!

R(h,) — R(h%)

386
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All functions
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Approximation Error

Details

R(li) — R(r"

All functions

R(h,) — R(h%)
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Approximation Error
Details

R(h%) — R(h*)

The approximation error R(h},) — R(h*) is
the error incurred by restricting to # .

All functions

R(h,) — R(h%)
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Approximation Error
Details

The approximation error R(h;f/) — R(h*) is

the error incurred by restricting to # .

This is not a random variable (why)?

87
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Approximation Error
Details

The approximation error R(h},) — R(h*) is

the error incurred by restricting to # .
This is not a random variable (why)?

Typically, approximation error
decreases with larger Z .
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Approximation Error
Details

R(h%) — R(h*)

The approximation error R(h},) — R(h*) is
the error incurred by restricting to # .

This is not a random variable (why)? h*

Typically, approximation error
decreases with larger Z .

All functions
Very rough intuition: a “bias” term.

R(h,) — R(h%)
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Excess Risk

Intuition: Size of #

R(h,) — R(h*) = R(h,) — R(h%) + R(h%) — R(h*)

est. error AP Prox. error

R(h3) + R(7*) R(n%) 1 R(h*) R(n) = R(h*)

R(h,) — R(h%,)

R(h,) — R(h%)

R(h,) — R(h%)
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Optimization Error

Details

But how do we searc
that minimizes empir

n for a hypothesis

cal risk?

A 1 { o
h, € argmin — Y £(h(x), y?)
he#H n i=1

R, (h)

To search for one of them, we run a

learning algorithm which typically uses a

well-defined optimization procedure.

=

All functions



Optimization Error

Details

We might not find the ERM h, € %.

We instead find h, € # via an algorithm,
typically through optimization.

The optimization error is the gap

between A, (wh

ich our algorithm returns)
and h, (the ERM):

R(h,) — R(h,).

20

All functions



Excess Risk

Full Decomposition

R(h%) — R(h*)

We receive h, from an algorithm.

Excess risk of A, :

1, il N e h*
R(hn) — R(h*) — ®........ _,.” .........................

R(h,) — R(h,) + R(h,) — R(h%) + R(h%) — R(h*)

All functions

Opt. error est. error approx. error

_ ) R(h,) — R(h%)
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Supervised Learning

Basic Pipeline

D, := {(xD,yD), @, y@), .., (x™, y)}

l

o

~—

92



Supervised Learning

Basic Pipeline

1. Collect training dataset, a collection of D, := {(xD, yDy, (x®, y@y, . (x™, y))
labeled input-output pairs.

l

<
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Supervised Learning

Basic Pipeline

1. Collect training dataset, a collection of D, := {(xD, yDy, (x®, y@y, . (x™, y))
labeled input-output pairs. |
(@G
2. Decide on the template of the hypothesis “?“
mapping that will map inputs to actions. ~——
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Supervised Learning

Basic Pipeline

1. Collect training dataset, a collection of
labeled input-output pairs.

2. Decide on the template of the hypothesis
mapping that will map inputs to actions.

3. A learning algorithm takes the labeled
training data as input and outputs a
hypothesis.
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Supervised Learning

Basic Pipeline

1. Collect training dataset, a collection of
labeled input-output pairs.

2. Decide on the template of the hypothesis

mapping that will map inputs to actions.

3. A learning algorithm takes the labeled
training data as input and outputs a
hypothesis.

4. The hypothesis predicts on new, unseen
data which we hope it does well on, under a
notion of loss.
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Supervised Learning

Basic Pipeline

1. Collect training dataset, a collection of D, := {(xD, yDy, (x®, y@y, . (x™, y))
labeled input-output pairs.

|

Representation @
2. Decide on the template of the hypothesis

mapping that will map inputs to actions. ~——

3. A learning algorithm takes the labeled
training data as input and outputs a
hypothesis.

4. The hypothesis predicts on new, unseen
data which we hope it does well on, under a
notion of loss.
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Supervised Learning

Basic Pipeline
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mapping that will map inputs to actions. ~——
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hypothesis.
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Supervised Learning

Excess Risk Formalization

1. Collect training dataset, a We receive h, from an algorithm.
collection of labeled input-output

pairs.

Excess risk of i, :

2. Decide on the template of the
hypothesis mapping that will map
Inputs to actions.

Representation

R(h,) — R(h*) =

3. A learning algorithm takes the
labeled training data as input and
outputs a hypothesis.

R(h,) — R(h,) +\R(h,) — R(h%) + R(h%) — R(h*)

Optimization

Opt. error est. error approx. error

Optimization Generalization Representation

4. The hypothesis predicts on new,  Generalization
unseen data which we hope it does
well on, under a notion of loss.
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Three Main Questions

Representation, Optimization, and Generalization

R(h,) — R(h*) =

R(h,) — R(h,) + R(h,) — R(h%) + R(h%) — R(h*)

N - g N

Opt. error est. error approx. error

Optimization Generalization Representation

Representation: Which hypothesis class # best models the relationship of X to 7
Generalization: How well can we extrapolate from training data to new, unseen data?

Optimization: How can we efficiently and accurately solve the ERM optimization problem?
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We can approximate risk with the empirical risk over sample D, = {(xV, y()), ..., (x™, y™)}:

A\

] ¢ o
2 )y ()
R, (h) - . izzl, £(h(x"), y*).
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The Main Cast

Summary of the Problem

Goal: Find a hypothesis h : & — & to minimize the risk R(h) := E[£(h(x), y)].

We can approximate risk with the empirical risk over sample D, = (D, yWy L (e, yyy,

Choose a hypothesis class Z and find the empirical risk minimizer h, € #-

A 1 o
h, € argmin — ) £(h(x), y?)
he#H n i=1

R, (h)

Or find A, that approximates izn well.
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The Main Cast

Summary of the Problem

Goal: Find a hypothesis h : & — & to minimize the risk R(h) := E[£(h(x), y)].

Overall quality (excess risk) of our produced £, :

R(h,) — R(h*) = R(h,) — R(h,) + R(h,) — R(h%) + R(h%) — R(h*)

Opt. error est. error approx. error

Choose # that balances approximation error and estimation error.
With more data, estimation error typically decreases, can use bigger .

Produce h, via an algorithm that (approximately and efficiently) minimizes empirical error.

97



Outline

Course Overview and Logistics
Introduction to Machine Learning
Statistical Learning Setup

Statistical Learning: Bayes Risk

Statistical Learning: Empirical Risk and ERM
Statistical Learning: Hypothesis Class

Excess Risk Decomposition and Three Types of Error

98



