

DS-GA 1003: Machine Learning

Lecture 1: Intro & Supervised Learning Framework

Slides adapted from material from David Rosenberg's version of DS-GA 1003.

Outline

Course Overview and Logistics

Introduction to Machine Learning

Statistical Learning Setup

Statistical Learning: Bayes Risk

Statistical Learning: Empirical Risk and ERM

Statistical Learning: Hypothesis Class

Excess Risk Decomposition and Three Types of Error

Course Website

NYU DS-GA 1003: Machine Learning (Spring 2026)

Search NYU DS-GA 1003: Machine Learning (Spring 2026) Gradescope Ed Anonymous Feedback

About

Calendar

Course Content

Homework

Staff

About

TABLE OF CONTENTS

1 [What's this course?](#)

2 [Prerequisites](#)

 a [Linear Algebra](#)

 b [Multivariable Calculus](#)

 c [Probability Theory and Statistics](#)

3 [Logistics](#)

4 [Resources](#)

5 [Assessment](#)

6 [Additional Information](#)

NOTE: This site is still under construction and will be undergoing changes until the first week of class, on January 20th! Please stay tuned for updates and monitor your email for communication about the course.

What's this course?

This course is a graduate-level introduction to machine learning. We try to present machine learning as a story where many algorithmic techniques drop out of a common statistical learning framework.

The course covers a wide variety of topics in machine learning and statistical modeling. While

Course Website

<https://nyu-dsga-1003.github.io/sp26/>

NYU DS-GA 1003: Machine Learning (Spring 2026)

Search NYU DS-GA 1003: Machine Learning (Spring 2026) Gradescope Ed Anonymous Feedback

About

Calendar

Course Content

Homework

Staff

TABLE OF CONTENTS

1 [What's this course?](#)

2 [Prerequisites](#)

 a [Linear Algebra](#)

 b [Multivariable Calculus](#)

 c [Probability Theory and Statistics](#)

3 [Logistics](#)

4 [Resources](#)

5 [Assessment](#)

6 [Additional Information](#)

NOTE: This site is still under construction and will be undergoing changes until the first week of class, on January 20th! Please stay tuned for updates and monitor your email for communication about the course.

What's this course?

This course is a graduate-level introduction to machine learning. We try to present machine learning as a story where many algorithmic techniques drop out of a common statistical learning framework.

The course covers a wide variety of topics in machine learning and statistical modeling. While

This site uses [Just the Docs](#), a documentation theme for Jekyll.

Staff & Office Hours

Staff

Instructors

Nicholas Tomlin

n.tomlin@nyu.edu

Hi! I'm a current faculty fellow at NYU, working on LLMs, reasoning, and interaction.

In my spare time, I enjoy playing chess, eating bagels, and entertaining my cat Coco.

Office Hours: Wednesdays 3:00pm - 4:00pm (CDS 617)

Sam Deng

samuel.deng@nyu.edu

Hi! I'm currently an adjunct instructor at NYU and final-year PhD student at Columbia, working on topics in machine learning theory. In my free time, I love going to the movies and running.

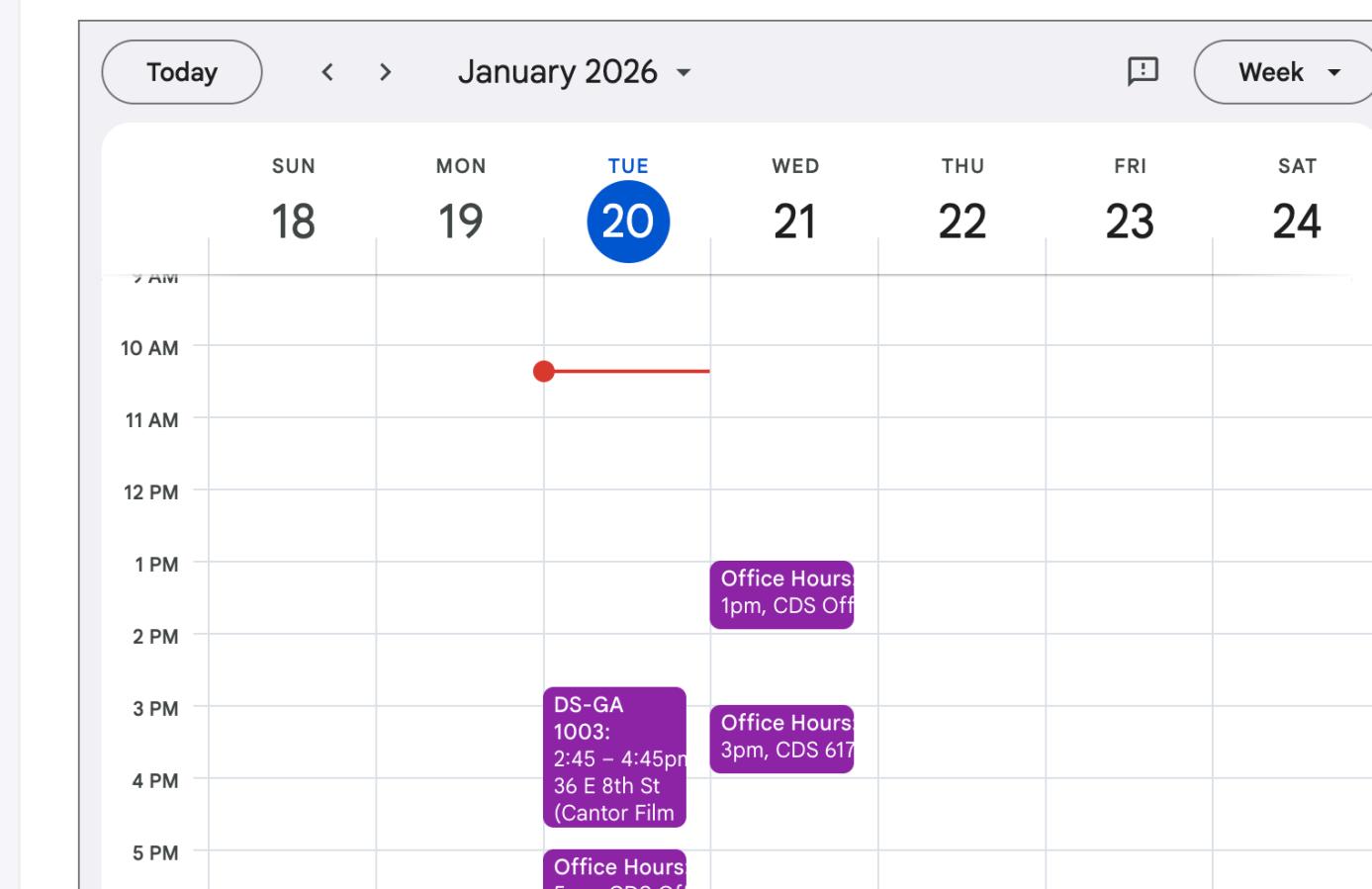
Office Hours: Tuesdays 5:00pm - 6:00pm (after class in CDS 242); Wednesdays 1:00pm - 2:00pm (CDS 242)

Teaching Assistants

Ansh Sharma

Course Calendar

This page includes the course calendar, which will include all the important and recurring dates for the course, including office hours. If needed, we will reflect changes here.



Staff & Office Hours

8 course staff teaching assistants.

Staff

Instructors

Nicholas Tomlin
n.tomlin@nyu.edu

Hi! I'm a current faculty fellow at NYU, working on LLMs, reasoning, and interaction. In my spare time, I enjoy playing chess, eating bagels, and entertaining my cat Coco.

Office Hours: Wednesdays 3:00pm - 4:00pm (CDS 617)

Sam Deng
samuel.deng@nyu.edu

Hi! I'm currently an adjunct instructor at NYU and final-year PhD student at Columbia, working on topics in machine learning theory. In my free time, I love going to the movies and running.

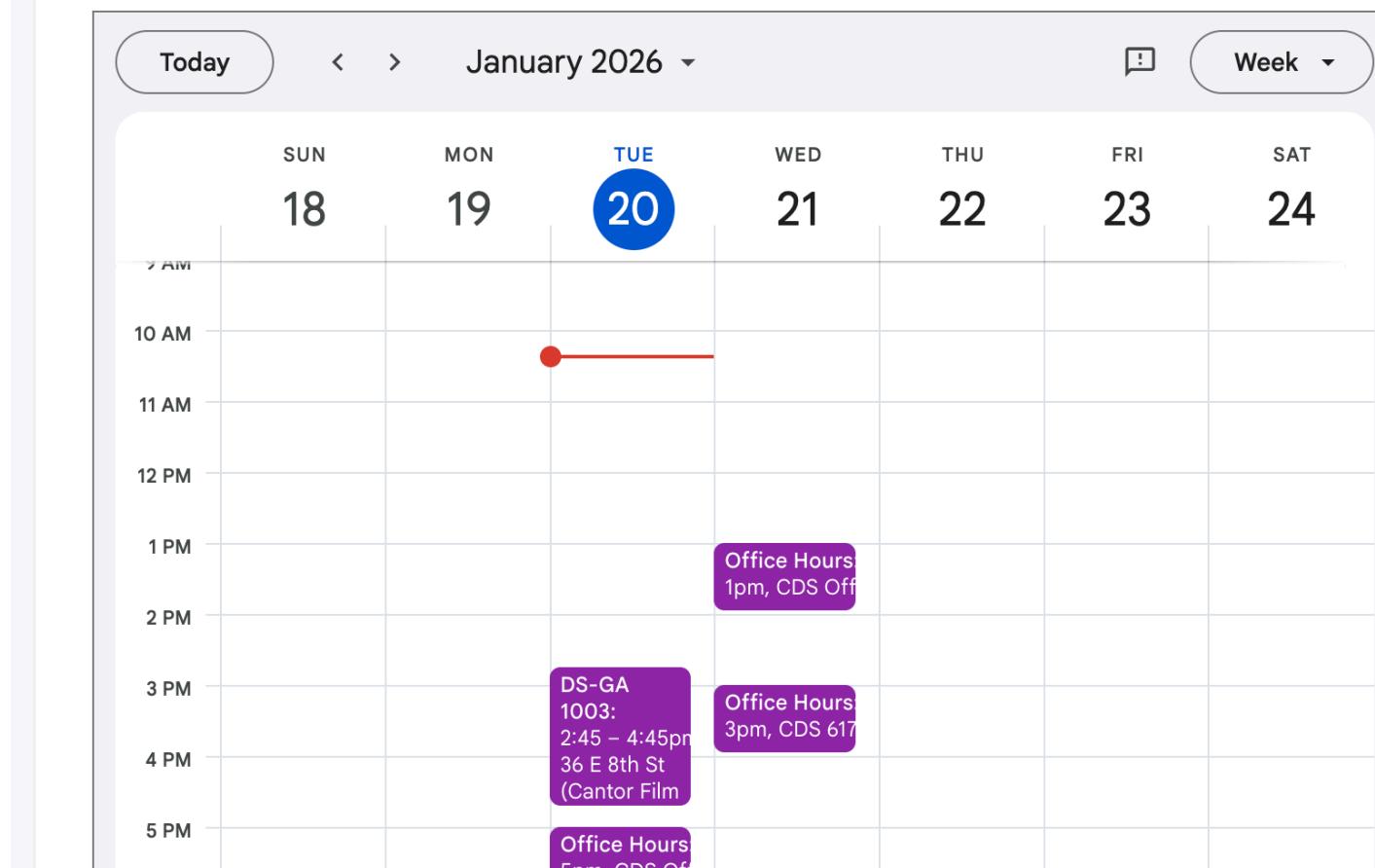
Office Hours: Tuesdays 5:00pm - 6:00pm (after class in CDS 242); Wednesdays 1:00pm - 2:00pm (CDS 242)

Teaching Assistants

Ansh Sharma

Course Calendar

This page includes the course calendar, which will include all the important and recurring dates for the course, including office hours. If needed, we will reflect changes here.



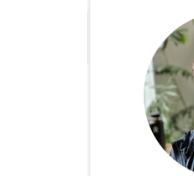
Staff & Office Hours

8 course staff teaching assistants.

Check the **Staff** page: <https://nyu-dsga-1003.github.io/sp26/staff/>

Staff

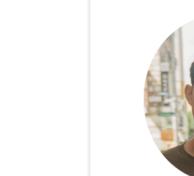
Instructors



Nicholas Tomlin
n.tomlin@nyu.edu

Hi! I'm a current faculty fellow at NYU, working on LLMs, reasoning, and interaction. In my spare time, I enjoy playing chess, eating bagels, and entertaining my cat Coco.

Office Hours: Wednesdays 3:00pm - 4:00pm (CDS 617)



Sam Deng
samuel.deng@nyu.edu

Hi! I'm currently an adjunct instructor at NYU and final-year PhD student at Columbia, working on topics in machine learning theory. In my free time, I love going to the movies and running.

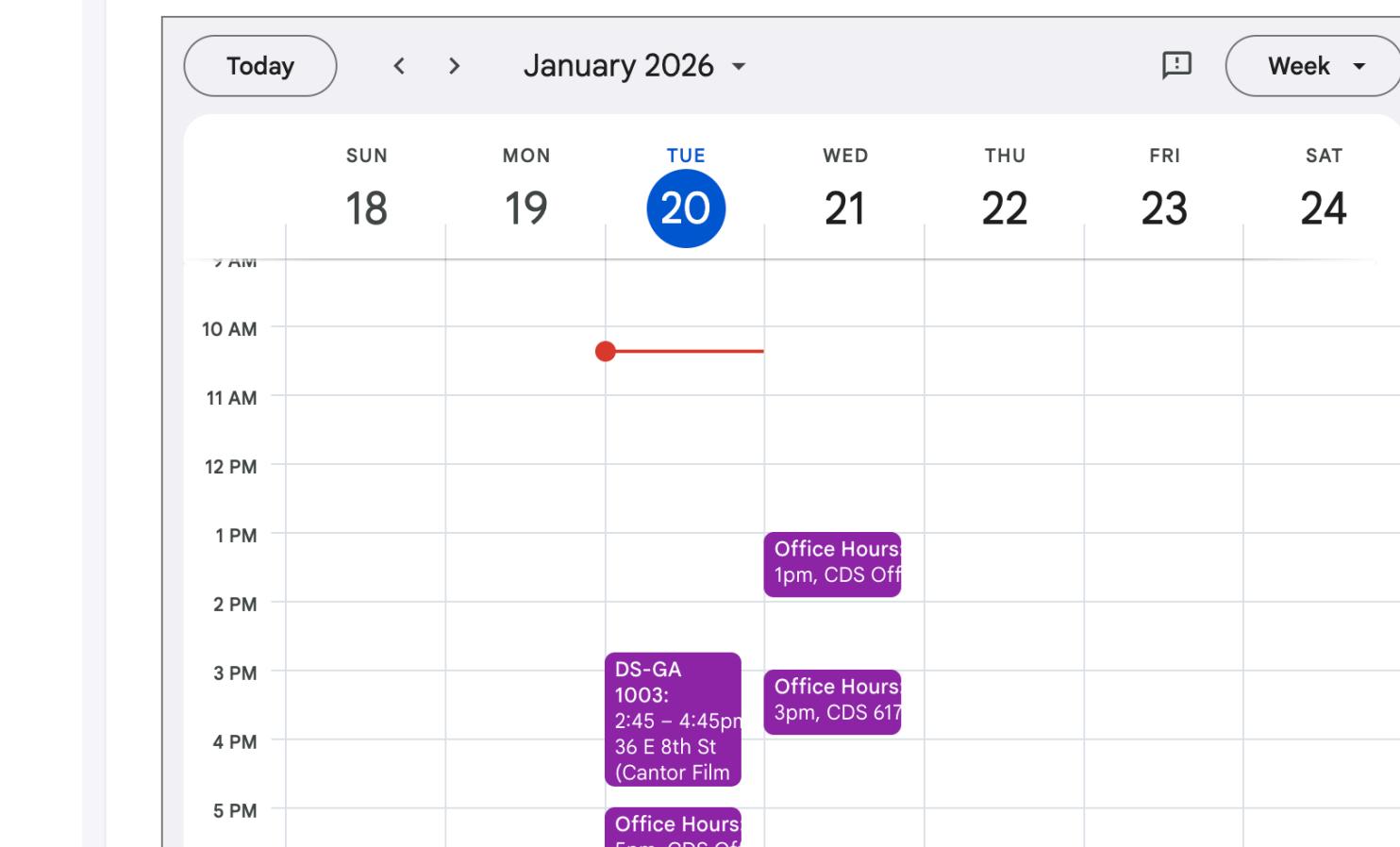
Office Hours: Tuesdays 5:00pm - 6:00pm (after class in CDS 242); Wednesdays 1:00pm - 2:00pm (CDS 242)

Teaching Assistants

Ansh Sharma

Course Calendar

This page includes the course calendar, which will include all the important and recurring dates for the course, including office hours. If needed, we will reflect changes here.



Staff & Office Hours

8 course staff teaching assistants.

Check the **Staff** page: <https://nyu-dsga-1003.github.io/sp26/staff/>

Office hours available every day of the week!

Staff

Instructors

Nicholas Tomlin
n.tomlin@nyu.edu

Hi! I'm a current faculty fellow at NYU, working on LLMs, reasoning, and interaction. In my spare time, I enjoy playing chess, eating bagels, and entertaining my cat Coco.

Office Hours: Wednesdays 3:00pm - 4:00pm (CDS 617)

Sam Deng
samuel.deng@nyu.edu

Hi! I'm currently an adjunct instructor at NYU and final-year PhD student at Columbia, working on topics in machine learning theory. In my free time, I love going to the movies and running.

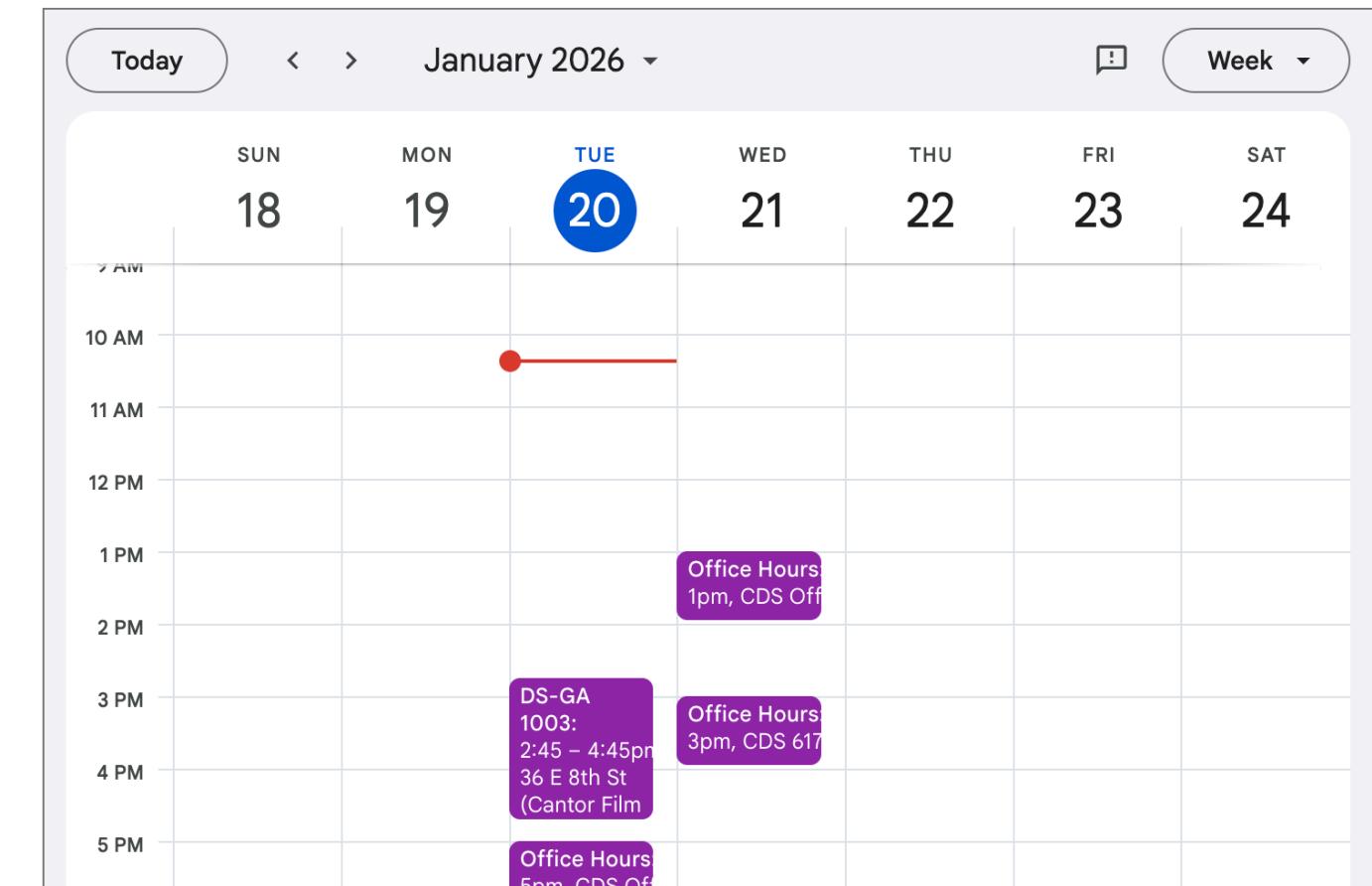
Office Hours: Tuesdays 5:00pm - 6:00pm (after class in CDS 242); Wednesdays 1:00pm - 2:00pm (CDS 242)

Teaching Assistants

Ansh Sharma

Course Calendar

This page includes the course calendar, which will include all the important and recurring dates for the course, including office hours. If needed, we will reflect changes here.



Staff & Office Hours

8 course staff teaching assistants.

Check the **Staff** page: <https://nyu-dsga-1003.github.io/sp26/staff/>

Office hours available every day of the week!

Check the **Calendar** page: <https://nyu-dsga-1003.github.io/sp26/calendar/>

Staff

Instructors

Nicholas Tomlin
n.tomlin@nyu.edu

Hi! I'm a current faculty fellow at NYU, working on LLMs, reasoning, and interaction. In my spare time, I enjoy playing chess, eating bagels, and entertaining my cat Coco.

Office Hours: Wednesdays 3:00pm - 4:00pm (CDS 617)

Sam Deng
samuel.deng@nyu.edu

Hi! I'm currently an adjunct instructor at NYU and final-year PhD student at Columbia, working on topics in machine learning theory. In my free time, I love going to the movies and running.

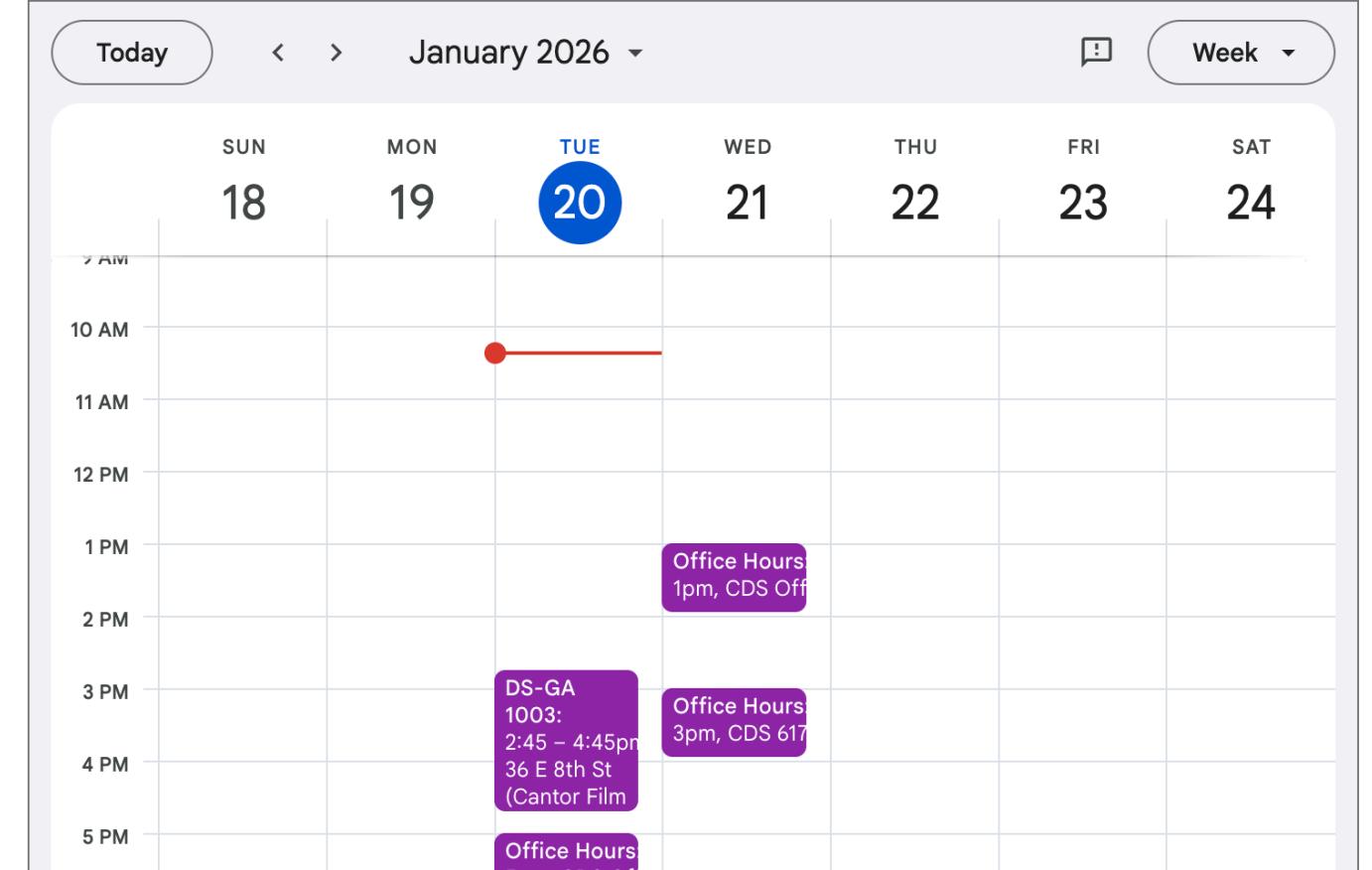
Office Hours: Tuesdays 5:00pm - 6:00pm (after class in CDS 242); Wednesdays 1:00pm - 2:00pm (CDS 242)

Teaching Assistants

Ansh Sharma

Course Calendar

This page includes the course calendar, which will include all the important and recurring dates for the course, including office hours. If needed, we will reflect changes here.



4

Staff & Office Hours

8 course staff teaching assistants.

Check the **Staff** page: <https://nyu-dsga-1003.github.io/sp26/staff/>

Office hours available every day of the week!

Check the **Calendar** page: <https://nyu-dsga-1003.github.io/sp26/calendar/>

Strongly welcome and encouraged to come to office hours!

Staff

Instructors

Nicholas Tomlin
n.tomlin@nyu.edu

Hi! I'm a current faculty fellow at NYU, working on LLMs, reasoning, and interaction. In my spare time, I enjoy playing chess, eating bagels, and entertaining my cat Coco.

Office Hours: Wednesdays 3:00pm - 4:00pm (CDS 617)

Sam Deng
samuel.deng@nyu.edu

Hi! I'm currently an adjunct instructor at NYU and final-year PhD student at Columbia, working on topics in machine learning theory. In my free time, I love going to the movies and running.

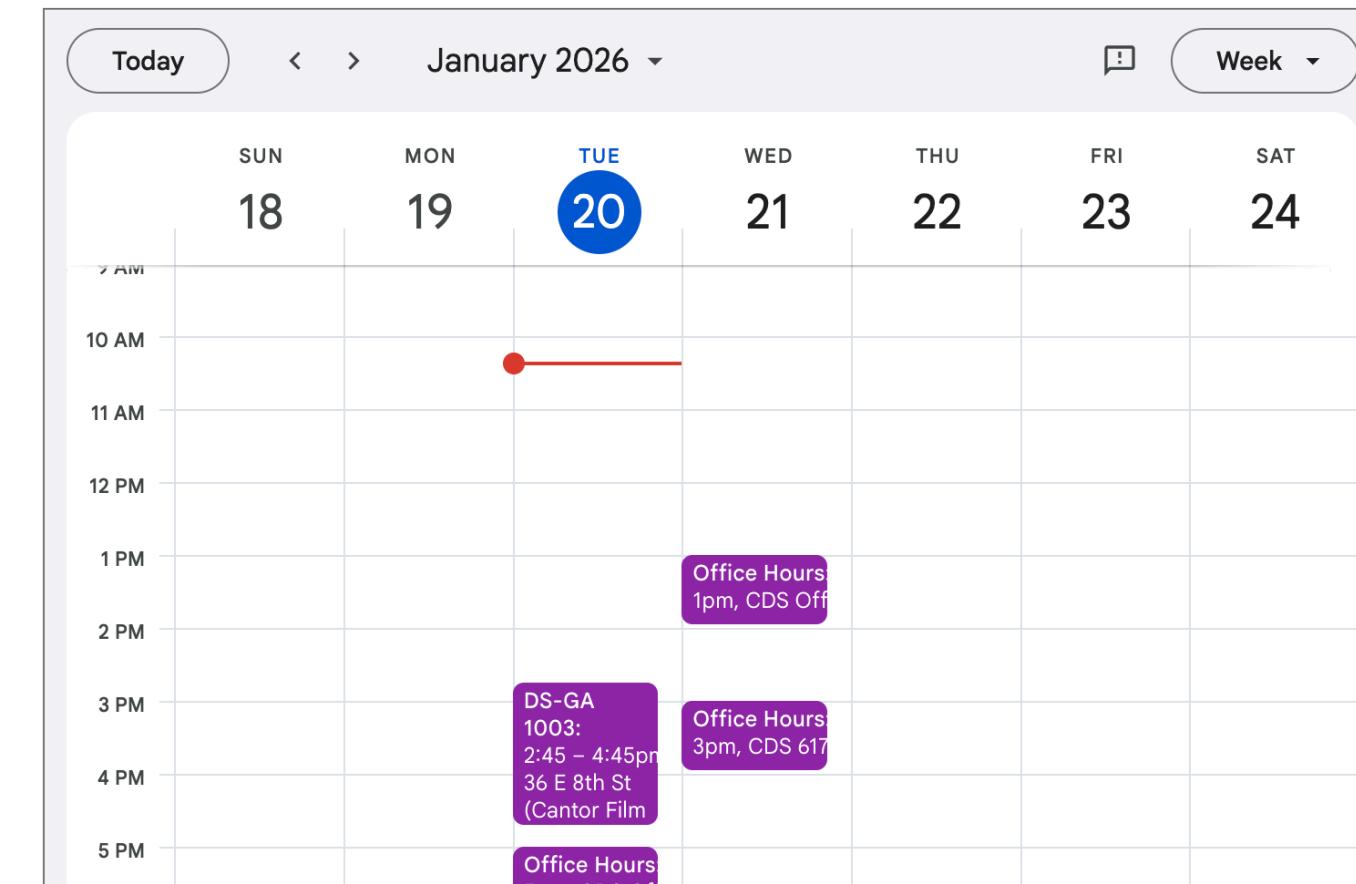
Office Hours: Tuesdays 5:00pm - 6:00pm (after class in CDS 242); Wednesdays 1:00pm - 2:00pm (CDS 242)

Teaching Assistants

Ansh Sharma

Course Calendar

This page includes the course calendar, which will include all the important and recurring dates for the course, including office hours. If needed, we will reflect changes here.



4

Staff & Office Hours

8 course staff teaching assistants.

Check the **Staff** page: <https://nyu-dsga-1003.github.io/sp26/staff/>

Office hours available every day of the week!

Check the **Calendar** page: <https://nyu-dsga-1003.github.io/sp26/calendar/>

Strongly welcome and encouraged to come to office hours!

Sam's: Tues 5 - 6pm; Wed 1 - 2pm

Staff

Instructors

 Nicholas Tomlin
n.tomlin@nyu.edu

Hi! I'm a current faculty fellow at NYU, working on LLMs, reasoning, and interaction. In my spare time, I enjoy playing chess, eating bagels, and entertaining my cat Coco.

Office Hours: Wednesdays 3:00pm - 4:00pm (CDS 617)

 Sam Deng
samuel.deng@nyu.edu

Hi! I'm currently an adjunct instructor at NYU and final-year PhD student at Columbia, working on topics in machine learning theory. In my free time, I love going to the movies and running.

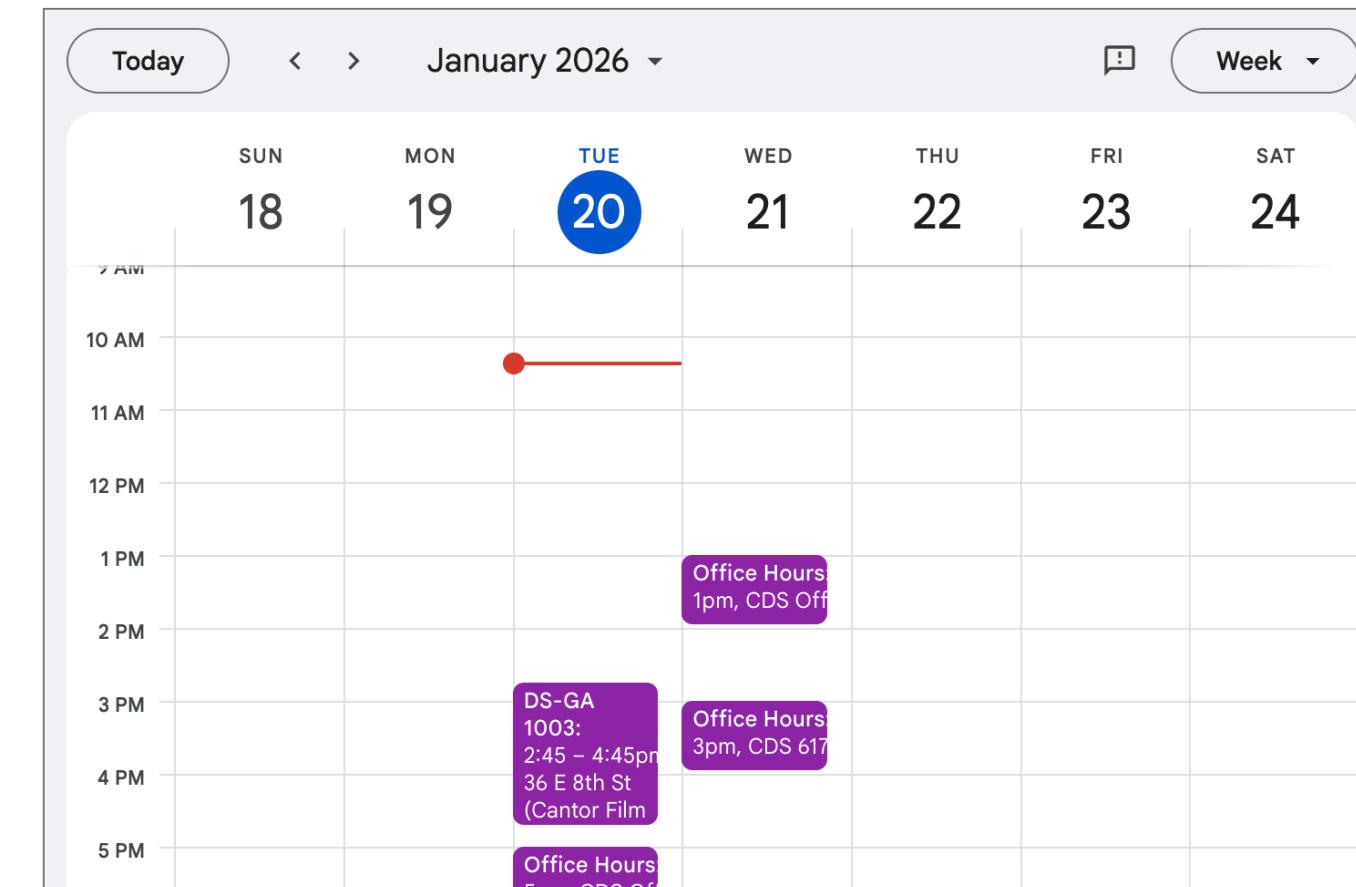
Office Hours: Tuesdays 5:00pm - 6:00pm (after class in CDS 242); Wednesdays 1:00pm - 2:00pm (CDS 242)

Teaching Assistants

 Ansh Sharma

Course Calendar

This page includes the course calendar, which will include all the important and recurring dates for the course, including office hours. If needed, we will reflect changes here.



The calendar shows a weekly view for January 2026. The 20th of January is highlighted in blue. A red horizontal line is drawn from 10 AM to 1 PM on that day, indicating a break. Three purple boxes represent office hours: one for Sam Deng (1pm, CDS Off) and two for Nicholas Tomlin (3pm, CDS 617; 5pm, CDS Off). Below the calendar, a note specifies the course details: DS-GA 1003, 2:45 - 4:45pm, 36 E 8th St (Cantor Film).

Staff & Office Hours

8 course staff teaching assistants.

Check the **Staff** page: <https://nyu-dsga-1003.github.io/sp26/staff/>

Office hours available every day of the week!

Check the **Calendar** page: <https://nyu-dsga-1003.github.io/sp26/calendar/>

Strongly welcome and encouraged to come to office hours!

Sam's: Tues 5 - 6pm; Wed 1 - 2pm

Nick's: Wed 3 - 4pm

Staff

Instructors

 Nicholas Tomlin
n.tomlin@nyu.edu

Hi! I'm a current faculty fellow at NYU, working on LLMs, reasoning, and interaction. In my spare time, I enjoy playing chess, eating bagels, and entertaining my cat Coco.

Office Hours: Wednesdays 3:00pm - 4:00pm (CDS 617)

 Sam Deng
samuel.deng@nyu.edu

Hi! I'm currently an adjunct instructor at NYU and final-year PhD student at Columbia, working on topics in machine learning theory. In my free time, I love going to the movies and running.

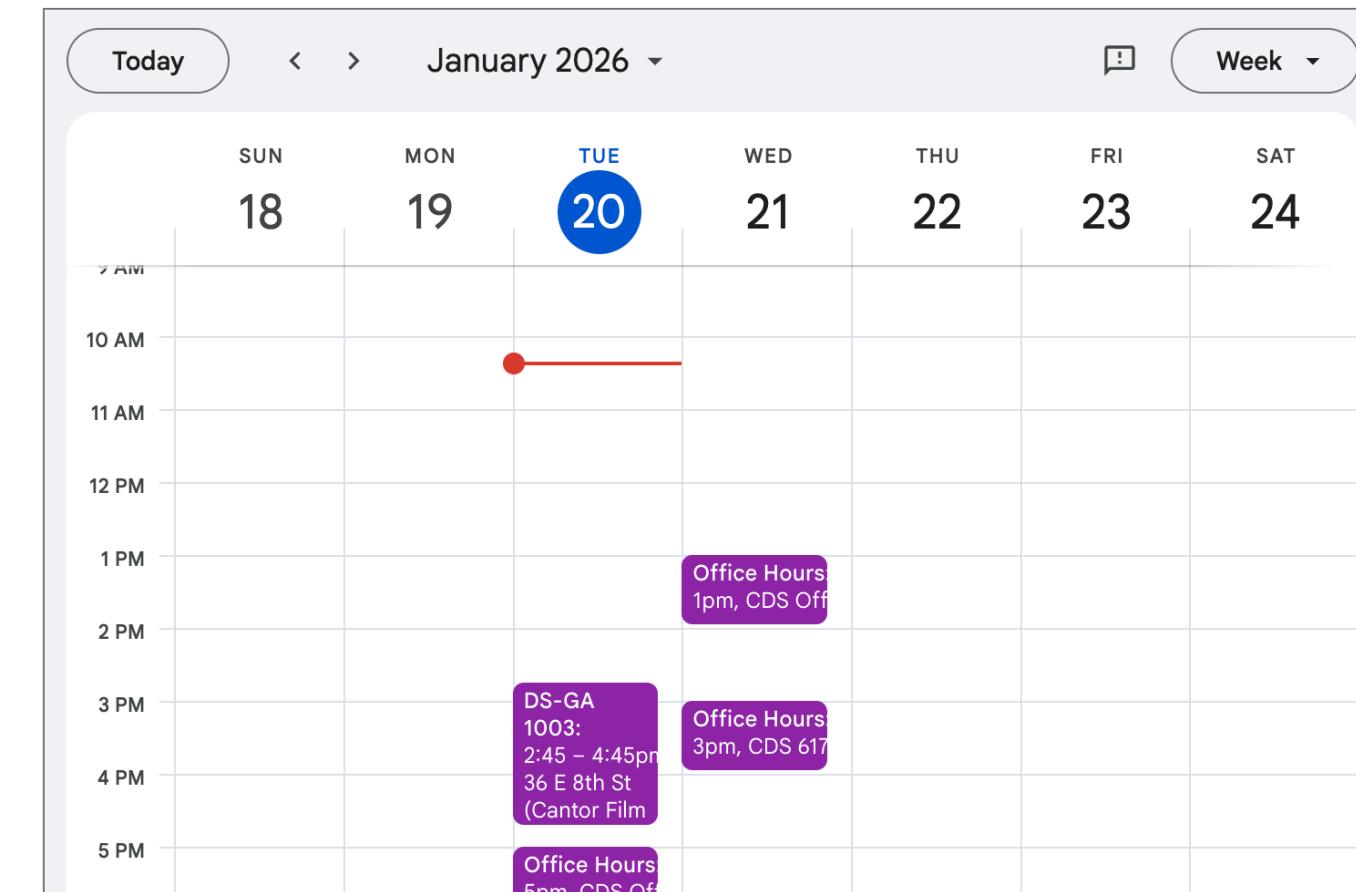
Office Hours: Tuesdays 5:00pm - 6:00pm (after class in CDS 242); Wednesdays 1:00pm - 2:00pm (CDS 242)

Teaching Assistants

 Ansh Sharma

Course Calendar

This page includes the course calendar, which will include all the important and recurring dates for the course, including office hours. If needed, we will reflect changes here.



The calendar shows a weekly view for January 2026. The 20th of January is highlighted in blue. On Tuesday, January 20th, there is a red horizontal line from 10 AM to 1 PM, with a red dot at 10 AM. On Wednesday, January 21st, there is a purple box labeled "Office Hours 1pm, CDS Off". On Thursday, January 22nd, there is a purple box labeled "Office Hours 3pm, CDS 617". On Friday, January 23rd, there is a purple box labeled "Office Hours 5pm, CDS Off". On Saturday, January 24th, there is a purple box labeled "Office Hours 5pm, CDS Off".

4

EdStem

Welcome to DS-GA 1003! #1

Samuel Deng STAFF
18 hours ago in Announcements

UNPIN STAR WATCH 119 VIEWS

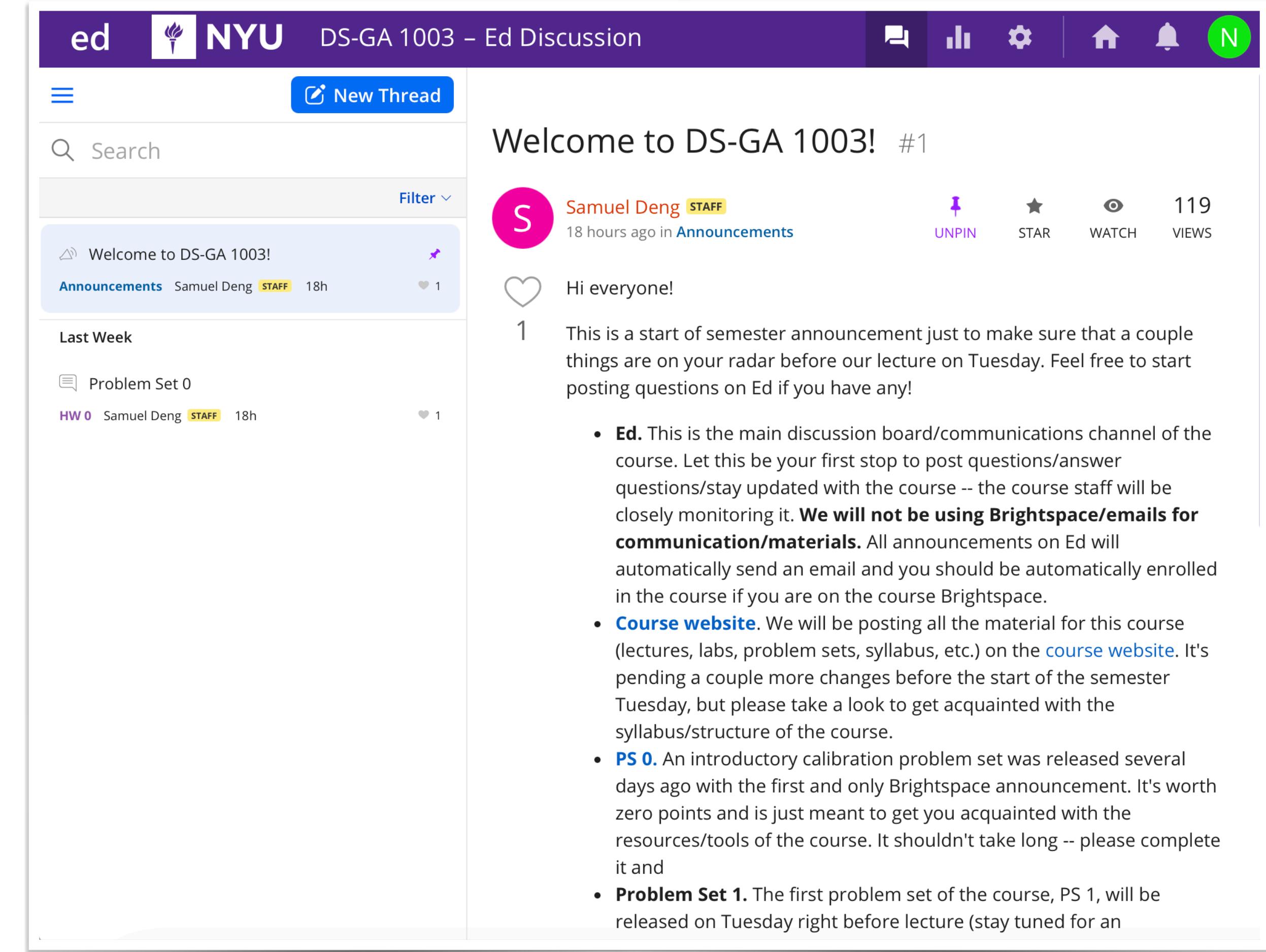
Hi everyone!

This is a start of semester announcement just to make sure that a couple things are on your radar before our lecture on Tuesday. Feel free to start posting questions on Ed if you have any!

- **Ed.** This is the main discussion board/communications channel of the course. Let this be your first stop to post questions/answer questions/stay updated with the course -- the course staff will be closely monitoring it. **We will not be using Brightspace/emails for communication/materials.** All announcements on Ed will automatically send an email and you should be automatically enrolled in the course if you are on the course Brightspace.
- **Course website.** We will be posting all the material for this course (lectures, labs, problem sets, syllabus, etc.) on the [course website](#). It's pending a couple more changes before the start of the semester Tuesday, but please take a look to get acquainted with the syllabus/structure of the course.
- **PS 0.** An introductory calibration problem set was released several days ago with the first and only Brightspace announcement. It's worth zero points and is just meant to get you acquainted with the resources/tools of the course. It shouldn't take long -- please complete it and
- **Problem Set 1.** The first problem set of the course, PS 1, will be released on Tuesday right before lecture (stay tuned for an

EdStem

We'll use Ed for all course communications!



The screenshot shows the EdStem course interface for DS-GA 1003 - Ed Discussion. The top navigation bar includes the 'ed' logo, NYU logo, course name, and various icons for messaging, stats, settings, and notifications. The sidebar on the left lists course announcements, including 'Welcome to DS-GA 1003!' by Samuel Deng (STAFF) posted 18 hours ago. The main feed shows a post from Samuel Deng (STAFF) titled 'Welcome to DS-GA 1003!' with a message: 'Hi everyone! This is a start of semester announcement just to make sure that a couple things are on your radar before our lecture on Tuesday. Feel free to start posting questions on Ed if you have any!'. Below this, there are sections for 'Last Week' and 'Problem Set 0'. The post has 119 views and a green 'N' icon in the top right corner.

Welcome to DS-GA 1003! #1

Samuel Deng STAFF
18 hours ago in Announcements

UNPIN STAR WATCH 119 VIEWS

Hi everyone!

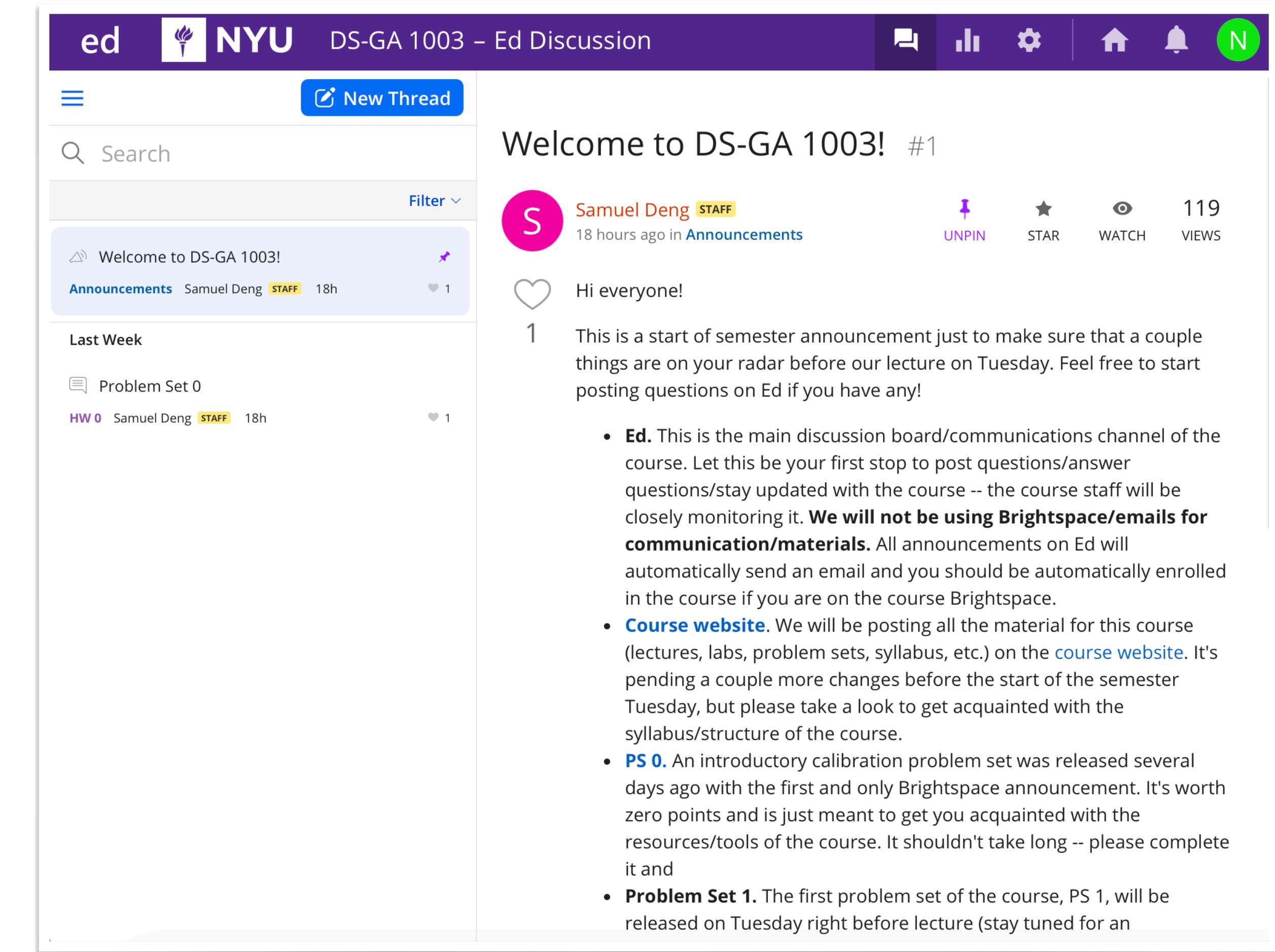
This is a start of semester announcement just to make sure that a couple things are on your radar before our lecture on Tuesday. Feel free to start posting questions on Ed if you have any!

- **Ed.** This is the main discussion board/communications channel of the course. Let this be your first stop to post questions/answer questions/stay updated with the course -- the course staff will be closely monitoring it. **We will not be using Brightspace/emails for communication/materials.** All announcements on Ed will automatically send an email and you should be automatically enrolled in the course if you are on the course Brightspace.
- **Course website.** We will be posting all the material for this course (lectures, labs, problem sets, syllabus, etc.) on the [course website](#). It's pending a couple more changes before the start of the semester Tuesday, but please take a look to get acquainted with the syllabus/structure of the course.
- **PS 0.** An introductory calibration problem set was released several days ago with the first and only Brightspace announcement. It's worth zero points and is just meant to get you acquainted with the resources/tools of the course. It shouldn't take long -- please complete it and
- **Problem Set 1.** The first problem set of the course, PS 1, will be released on Tuesday right before lecture (stay tuned for an

EdStem

We'll use Ed for all course communications!

By default, please make your questions public; if you have a question, it's likely many other people do too!



Welcome to DS-GA 1003! #1

Samuel Deng STAFF 18 hours ago in Announcements

UNPIN STAR WATCH VIEWS

Hi everyone!

This is a start of semester announcement just to make sure that a couple things are on your radar before our lecture on Tuesday. Feel free to start posting questions on Ed if you have any!

- **Ed.** This is the main discussion board/communications channel of the course. Let this be your first stop to post questions/answer questions/stay updated with the course -- the course staff will be closely monitoring it. **We will not be using Brightspace/emails for communication/materials.** All announcements on Ed will automatically send an email and you should be automatically enrolled in the course if you are on the course Brightspace.
- **Course website.** We will be posting all the material for this course (lectures, labs, problem sets, syllabus, etc.) on the [course website](#). It's pending a couple more changes before the start of the semester Tuesday, but please take a look to get acquainted with the syllabus/structure of the course.
- **PS 0.** An introductory calibration problem set was released several days ago with the first and only Brightspace announcement. It's worth zero points and is just meant to get you acquainted with the resources/tools of the course. It shouldn't take long -- please complete it and
- **Problem Set 1.** The first problem set of the course, PS 1, will be released on Tuesday right before lecture (stay tuned for an

EdStem

We'll use Ed for all course communications!

By default, please make your questions public; if you have a question, it's likely many other people do too!

If necessary (e.g., if your question reveals the answer to a homework question), post privately

Welcome to DS-GA 1003! #1

Samuel Deng STAFF
18 hours ago in Announcements

UNPIN STAR WATCH 119 VIEWS

Hi everyone!

This is a start of semester announcement just to make sure that a couple things are on your radar before our lecture on Tuesday. Feel free to start posting questions on Ed if you have any!

- **Ed.** This is the main discussion board/communications channel of the course. Let this be your first stop to post questions/answer questions/stay updated with the course -- the course staff will be closely monitoring it. **We will not be using Brightspace/emails for communication/materials.** All announcements on Ed will automatically send an email and you should be automatically enrolled in the course if you are on the course Brightspace.
- **Course website.** We will be posting all the material for this course (lectures, labs, problem sets, syllabus, etc.) on the [course website](#). It's pending a couple more changes before the start of the semester Tuesday, but please take a look to get acquainted with the syllabus/structure of the course.
- **PS 0.** An introductory calibration problem set was released several days ago with the first and only Brightspace announcement. It's worth zero points and is just meant to get you acquainted with the resources/tools of the course. It shouldn't take long -- please complete it and
- **Problem Set 1.** The first problem set of the course, PS 1, will be released on Tuesday right before lecture (stay tuned for an

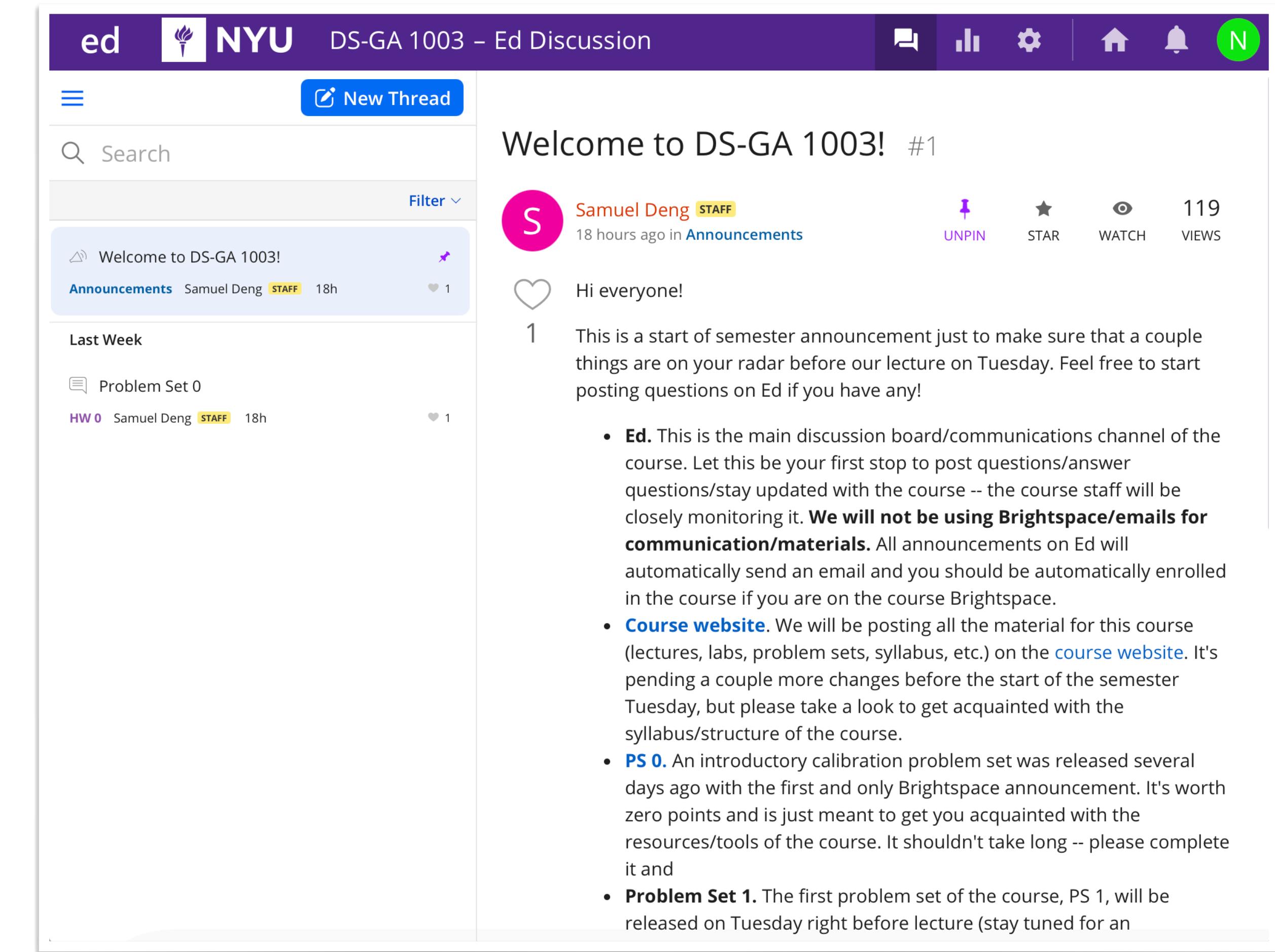
EdStem

We'll use Ed for all course communications!

By default, please make your questions public; if you have a question, it's likely many other people do too!

If necessary (e.g., if your question reveals the answer to a homework question), post privately

Only email the instructors as a last resort. We are flooded with emails!



Welcome to DS-GA 1003! #1

Samuel Deng STAFF
18 hours ago in Announcements

UNPIN STAR WATCH VIEWS

Hi everyone!

This is a start of semester announcement just to make sure that a couple things are on your radar before our lecture on Tuesday. Feel free to start posting questions on Ed if you have any!

- **Ed.** This is the main discussion board/communications channel of the course. Let this be your first stop to post questions/answer questions/stay updated with the course -- the course staff will be closely monitoring it. **We will not be using Brightspace/emails for communication/materials.** All announcements on Ed will automatically send an email and you should be automatically enrolled in the course if you are on the course Brightspace.
- **Course website.** We will be posting all the material for this course (lectures, labs, problem sets, syllabus, etc.) on the [course website](#). It's pending a couple more changes before the start of the semester Tuesday, but please take a look to get acquainted with the syllabus/structure of the course.
- **PS 0.** An introductory calibration problem set was released several days ago with the first and only Brightspace announcement. It's worth zero points and is just meant to get you acquainted with the resources/tools of the course. It shouldn't take long -- please complete it and
- **Problem Set 1.** The first problem set of the course, PS 1, will be released on Tuesday right before lecture (stay tuned for an

EdStem

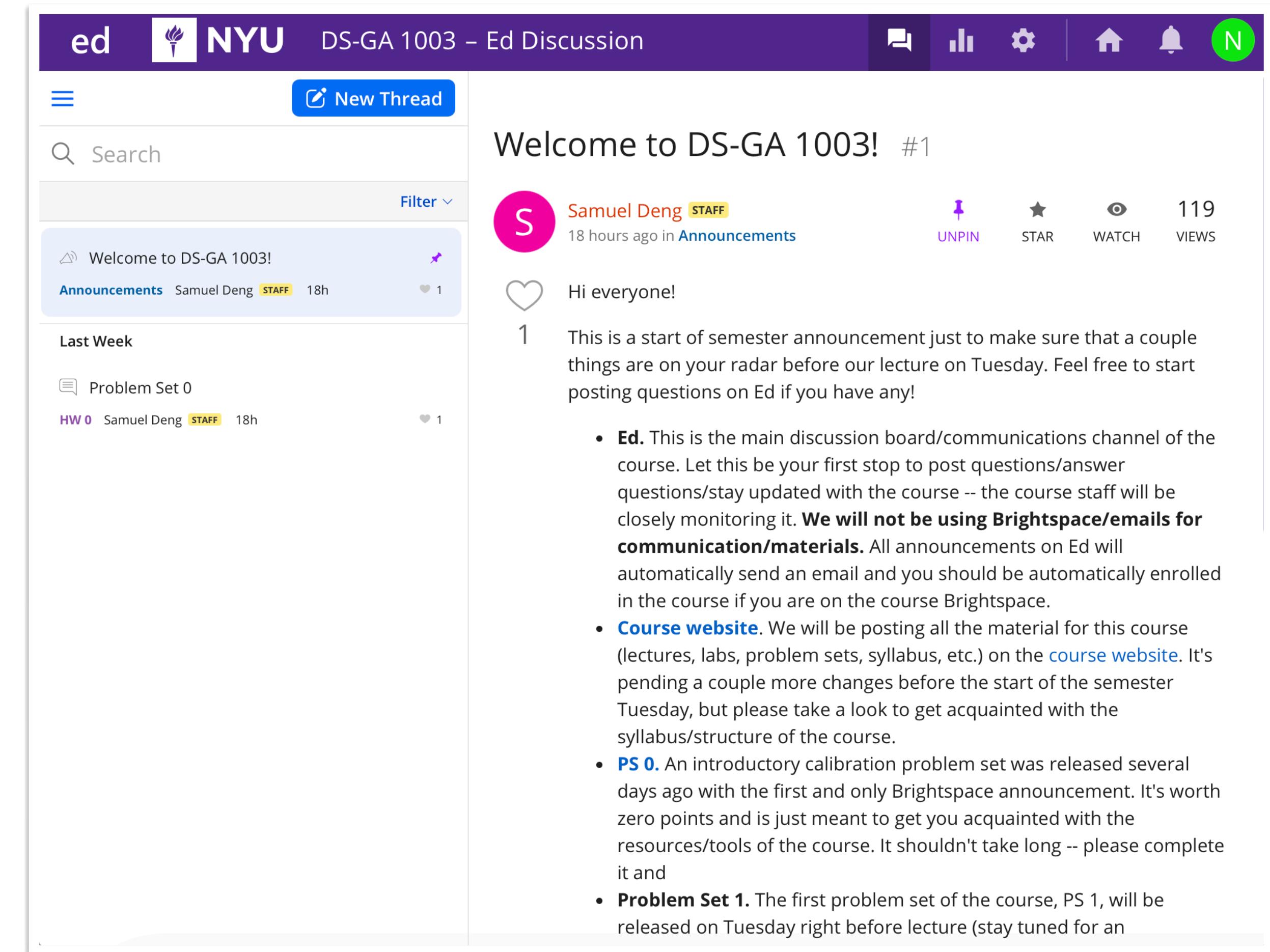
We'll use Ed for all course communications!

By default, please make your questions public; if you have a question, it's likely many other people do too!

If necessary (e.g., if your question reveals the answer to a homework question), post privately

Only email the instructors as a last resort. We are flooded with emails!

We are not using Brightspace!



The screenshot shows the EdStem platform interface for the course DS-GA 1003. The top navigation bar includes the 'ed' logo, the NYU logo, the course name 'DS-GA 1003 – Ed Discussion', and various navigation icons. The main content area displays a list of posts. The first post, titled 'Welcome to DS-GA 1003!', is an announcement from 'Samuel Deng STAFF' posted 18 hours ago. It has 1 like and 119 views. The post content is: 'Hi everyone! This is a start of semester announcement just to make sure that a couple things are on your radar before our lecture on Tuesday. Feel free to start posting questions on Ed if you have any!'. Below this, there are two other posts: 'Problem Set 0' by 'Samuel Deng STAFF' and 'HW 0' by 'Samuel Deng STAFF'. The 'Problem Set 0' post has 1 like. On the right side of the screen, there is a sidebar with course-related links: 'Welcome to DS-GA 1003! #1', 'UNPIN', 'STAR', 'WATCH', and 'VIEWS'.

Grading Rubric

Grading Rubric

Homeworks: 20%

Grading Rubric

Homeworks: 20%

Midterm Exam: 35%

Grading Rubric

Homeworks: 20%

Midterm Exam: 35%

Final Project: 35%

Grading Rubric

Homeworks: 20%

Midterm Exam: 35%

Final Project: 35%

Lab Attendance: 10%

Course Format

Course Format

Lectures: Tuesdays, 2:45-4:45PM, 36 E 8th St (Cantor Film Ctr) Room 200

Course Format

Lectures: Tuesdays, 2:45-4:45PM, 36 E 8th St (Cantor Film Ctr) Room 200

Labs (mandatory!): Thursday, 7:10-8PM, 238 Thompson St (GCASL) Room C95

Course Format

Lectures: Tuesdays, 2:45-4:45PM, 36 E 8th St (Cantor Film Ctr) Room 200

Labs (mandatory!): Thursday, 7:10-8PM, 238 Thompson St (GCASL) Room C95

Course Format

Lectures: Tuesdays, 2:45-4:45PM, 36 E 8th St (Cantor Film Ctr) Room 200

Labs (mandatory!): Thursday, 7:10-8PM, 238 Thompson St (GCASL) Room C95

Course Format

Course Format

Lectures: Tuesdays, 2:45-4:45PM, 36 E 8th St (Cantor Film Ctr) Room 200

Course Format

Lectures: Tuesdays, 2:45-4:45PM, 36 E 8th St (Cantor Film Ctr) Room 200

Labs (mandatory!): Thursday, 7:10-8PM, 238 Thompson St (GCASL) Room C95

Course Format

Lectures: Tuesdays, 2:45-4:45PM, 36 E 8th St (Cantor Film Ctr) Room 200

Labs (mandatory!): Thursday, 7:10-8PM, 238 Thompson St (GCASL) Room C95

Course Format

Lectures: Tuesdays, 2:45-4:45PM, 36 E 8th St (Cantor Film Ctr) Room 200

Labs (mandatory!): Thursday, 7:10-8PM, 238 Thompson St (GCASL) Room C95

Lectures:

Course Format

Lectures: Tuesdays, 2:45-4:45PM, 36 E 8th St (Cantor Film Ctr) Room 200

Labs (mandatory!): Thursday, 7:10-8PM, 238 Thompson St (GCASL) Room C95

Lectures:

- Weeks 1-11: "classical ML" (gradient descent, regularization, SVMs, etc.)

Course Format

Lectures: Tuesdays, 2:45-4:45PM, 36 E 8th St (Cantor Film Ctr) Room 200

Labs (mandatory!): Thursday, 7:10-8PM, 238 Thompson St (GCASL) Room C95

Lectures:

- Weeks 1-11: “classical ML” (gradient descent, regularization, SVMs, etc.)
- Weeks 12-16: “applied ML” (neural nets, generative models, LLMs, etc.)

Course Format

Lectures: Tuesdays, 2:45-4:45PM, 36 E 8th St (Cantor Film Ctr) Room 200

Labs (mandatory!): Thursday, 7:10-8PM, 238 Thompson St (GCASL) Room C95

Lectures:

- Weeks 1-11: “classical ML” (gradient descent, regularization, SVMs, etc.)
- Weeks 12-16: “applied ML” (neural nets, generative models, LLMs, etc.)
- We’ll do our best to post lecture slides and other relevant materials before class!

Course Format

Lectures: Tuesdays, 2:45-4:45PM, 36 E 8th St (Cantor Film Ctr) Room 200

Labs (mandatory!): Thursday, 7:10-8PM, 238 Thompson St (GCASL) Room C95

Lectures:

- Weeks 1-11: “classical ML” (gradient descent, regularization, SVMs, etc.)
- Weeks 12-16: “applied ML” (neural nets, generative models, LLMs, etc.)
- We’ll do our best to post lecture slides and other relevant materials before class!
- Lectures will be recorded (on Brightspace), but we strongly recommend in-person attendance

Course Format

Course Format

Lectures: Tuesdays, 2:45-4:45PM, 36 E 8th St (Cantor Film Ctr) Room 200

Course Format

Lectures: Tuesdays, 2:45-4:45PM, 36 E 8th St (Cantor Film Ctr) Room 200

Labs (mandatory!): Thursday, 7:10-8PM, 238 Thompson St (GCASL) Room C95

Course Format

Lectures: Tuesdays, 2:45-4:45PM, 36 E 8th St (Cantor Film Ctr) Room 200

Labs (mandatory!): Thursday, 7:10-8PM, 238 Thompson St (GCASL) Room C95

Course Format

Lectures: Tuesdays, 2:45-4:45PM, 36 E 8th St (Cantor Film Ctr) Room 200

Labs (mandatory!): Thursday, 7:10-8PM, 238 Thompson St (GCASL) Room C95

Lab grading policy:

Course Format

Lectures: Tuesdays, 2:45-4:45PM, 36 E 8th St (Cantor Film Ctr) Room 200

Labs (mandatory!): Thursday, 7:10-8PM, 238 Thompson St (GCASL) Room C95

Lab grading policy:

- There are 12 labs in total

Course Format

Lectures: Tuesdays, 2:45-4:45PM, 36 E 8th St (Cantor Film Ctr) Room 200

Labs (mandatory!): Thursday, 7:10-8PM, 238 Thompson St (GCASL) Room C95

Lab grading policy:

- There are 12 labs in total
- You must attend 10+ labs to receive full credit for lab attendance

Course Format

Lectures: Tuesdays, 2:45-4:45PM, 36 E 8th St (Cantor Film Ctr) Room 200

Labs (mandatory!): Thursday, 7:10-8PM, 238 Thompson St (GCASL) Room C95

Lab grading policy:

- There are 12 labs in total
- You must attend 10+ labs to receive full credit for lab attendance
- You can receive 1 point of extra credit for each additional lab you attend

Midterm

Midterm

The midterm will be held in-class on Tuesday, March 10th, from 2:45-4:45PM.

Midterm

The midterm will be held in-class on Tuesday, March 10th, from 2:45-4:45PM.

Midterm

The midterm will be held in-class on Tuesday, March 10th, from 2:45-4:45PM.

IMPORTANT: Please make sure you are available at this time as we will not be able to offer makeup midterms! If you have a conflict, then you should consider not taking this course.

Final Project

Final Project

Form groups of 2-3 students and write an 8-page paper:

Final Project

Form groups of 2-3 students and write an 8-page paper:

- Track 1: Applied ML - choose a real-world problem, identify how and why machine learning could be helpful, and find or collect a relevant dataset for the problem. Then, establish baselines and compare performance of many different ML techniques learned in class.

Final Project

Form groups of 2-3 students and write an 8-page paper:

- Track 1: Applied ML - choose a real-world problem, identify how and why machine learning could be helpful, and find or collect a relevant dataset for the problem. Then, establish baselines and compare performance of many different ML techniques learned in class.
- Track 2: Research - identify a gap in the literature for an ML topic of interest, and then propose and execute experiments to address the gap. Then, write a NeurIPS/ICML/ICLR-style paper.

Final Project

Form groups of 2-3 students and write an 8-page paper:

- Track 1: Applied ML - choose a real-world problem, identify how and why machine learning could be helpful, and find or collect a relevant dataset for the problem. Then, establish baselines and compare performance of many different ML techniques learned in class.
- Track 2: Research - identify a gap in the literature for an ML topic of interest, and then propose and execute experiments to address the gap. Then, write a NeurIPS/ICML/ICLR-style paper.

Key dates:

Final Project

Form groups of 2-3 students and write an 8-page paper:

- Track 1: Applied ML - choose a real-world problem, identify how and why machine learning could be helpful, and find or collect a relevant dataset for the problem. Then, establish baselines and compare performance of many different ML techniques learned in class.
- Track 2: Research - identify a gap in the literature for an ML topic of interest, and then propose and execute experiments to address the gap. Then, write a NeurIPS/ICML/ICLR-style paper.

Key dates:

- Groups formed for projects: Feb 28th

Final Project

Form groups of 2-3 students and write an 8-page paper:

- Track 1: Applied ML - choose a real-world problem, identify how and why machine learning could be helpful, and find or collect a relevant dataset for the problem. Then, establish baselines and compare performance of many different ML techniques learned in class.
- Track 2: Research - identify a gap in the literature for an ML topic of interest, and then propose and execute experiments to address the gap. Then, write a NeurIPS/ICML/ICLR-style paper.

Key dates:

- Groups formed for projects: Feb 28th
- Project proposal (~2 pages): March 31st

Final Project

Form groups of 2-3 students and write an 8-page paper:

- Track 1: Applied ML - choose a real-world problem, identify how and why machine learning could be helpful, and find or collect a relevant dataset for the problem. Then, establish baselines and compare performance of many different ML techniques learned in class.
- Track 2: Research - identify a gap in the literature for an ML topic of interest, and then propose and execute experiments to address the gap. Then, write a NeurIPS/ICML/ICLR-style paper.

Key dates:

- Groups formed for projects: Feb 28th
- Project proposal (~2 pages): March 31st
- Final project submitted: May 8th

Homeworks

Homeworks

Seven homeworks, plus Homework 0 ("Submitting and typesetting your homework")

Homeworks

Seven homeworks, plus Homework 0 ("Submitting and typesetting your homework")

You will have roughly two weeks to complete each homework once it is assigned

Homeworks

Seven homeworks, plus Homework 0 ("Submitting and typesetting your homework")

You will have roughly two weeks to complete each homework once it is assigned

Homeworks

Seven homeworks, plus Homework 0 ("Submitting and typesetting your homework")

You will have roughly two weeks to complete each homework once it is assigned

Late policy:

Homeworks

Seven homeworks, plus Homework 0 ("Submitting and typesetting your homework")

You will have roughly two weeks to complete each homework once it is assigned

Late policy:

- You have 6 late days in total across the semester; if you want to submit 1-2 days late but have already used your late days, you will incur a 20% grade penalty per day

Homeworks

Seven homeworks, plus Homework 0 ("Submitting and typesetting your homework")

You will have roughly two weeks to complete each homework once it is assigned

Late policy:

- You have 6 late days in total across the semester; if you want to submit 1-2 days late but have already used your late days, you will incur a 20% grade penalty per day
- However, you can use a maximum of 2 late days per homework. Gradescope will close 48 hours after the assignment deadline

Homeworks

Seven homeworks, plus Homework 0 ("Submitting and typesetting your homework")

You will have roughly two weeks to complete each homework once it is assigned

Late policy:

- You have 6 late days in total across the semester; if you want to submit 1-2 days late but have already used your late days, you will incur a 20% grade penalty per day
- However, you can use a maximum of 2 late days per homework. Gradescope will close 48 hours after the assignment deadline
- You can drop your lowest homework grade

Homeworks

Homeworks

1. Regression & Statistical Learning

Homeworks

1. Regression & Statistical Learning
2. Regularization & GD

Homeworks

1. Regression & Statistical Learning
2. Regularization & GD
3. Linear Classification & SVM

Homeworks

1. Regression & Statistical Learning
2. Regularization & GD
3. Linear Classification & SVM
4. MLE & Conditional Probability Models

Homeworks

1. Regression & Statistical Learning
2. Regularization & GD
3. Linear Classification & SVM
4. MLE & Conditional Probability Models
5. Decision/RFs & Boosting

Homeworks

1. Regression & Statistical Learning
2. Regularization & GD
3. Linear Classification & SVM
4. MLE & Conditional Probability Models
5. Decision/RFs & Boosting
6. NNs

Homeworks

1. Regression & Statistical Learning
2. Regularization & GD
3. Linear Classification & SVM
4. MLE & Conditional Probability Models
5. Decision/RFs & Boosting
6. NNs
7. Generative Models & RL

Homeworks

Homeworks

In this section, we will post the biweekly homeworks for the semester. Check back here for the latest problem set!

Homework 0

Material:	Submitting & typesetting your homework	ps0-submission.zip, ps0.pdf
Release:	Monday, January 12th, 7:30 PM ET	
Due:	Friday, January 23rd, 11:59 PM ET	

Homework 1

Material:	Error decomposition and regression	ps1-statlearning.zip, ps1.pdf
Release:	Tuesday, January 20th, 2:30 PM ET	
Due:	Tuesday, February 3rd, 11:59 PM ET	

Homeworks

1. Regression & Statistical Learning

Homeworks

In this section, we will post the biweekly homeworks for the semester. Check back here for the latest problem set!

Homework 0

Material:	Submitting & typesetting your homework	ps0-submission.zip, ps0.pdf
Release:	Monday, January 12th, 7:30 PM ET	
Due:	Friday, January 23rd, 11:59 PM ET	

Homework 1

Material:	Error decomposition and regression	ps1-statlearning.zip, ps1.pdf
Release:	Tuesday, January 20th, 2:30 PM ET	
Due:	Tuesday, February 3rd, 11:59 PM ET	

Homeworks

1. Regression & Statistical Learning
2. Regularization & GD

Homeworks

In this section, we will post the biweekly homeworks for the semester. Check back here for the latest problem set!

Homework 0

Material:	Submitting & typesetting your homework	ps0-submission.zip, ps0.pdf
Release:	Monday, January 12th, 7:30 PM ET	
Due:	Friday, January 23rd, 11:59 PM ET	

Homework 1

Material:	Error decomposition and regression	ps1-statlearning.zip, ps1.pdf
Release:	Tuesday, January 20th, 2:30 PM ET	
Due:	Tuesday, February 3rd, 11:59 PM ET	

Homeworks

1. Regression & Statistical Learning
2. Regularization & GD
3. Linear Classification & SVM

Homeworks

In this section, we will post the biweekly homeworks for the semester. Check back here for the latest problem set!

Homework 0

Material:	Submitting & typesetting your homework	ps0-submission.zip, ps0.pdf
Release:	Monday, January 12th, 7:30 PM ET	
Due:	Friday, January 23rd, 11:59 PM ET	

Homework 1

Material:	Error decomposition and regression	ps1-statlearning.zip, ps1.pdf
Release:	Tuesday, January 20th, 2:30 PM ET	
Due:	Tuesday, February 3rd, 11:59 PM ET	

Homeworks

1. Regression & Statistical Learning
2. Regularization & GD
3. Linear Classification & SVM
4. MLE & Conditional Probability Models

Homeworks

In this section, we will post the biweekly homeworks for the semester. Check back here for the latest problem set!

Homework 0

Material:	Submitting & typesetting your homework	ps0-submission.zip, ps0.pdf
Release:	Monday, January 12th, 7:30 PM ET	
Due:	Friday, January 23rd, 11:59 PM ET	

Homework 1

Material:	Error decomposition and regression	ps1-statlearning.zip, ps1.pdf
Release:	Tuesday, January 20th, 2:30 PM ET	
Due:	Tuesday, February 3rd, 11:59 PM ET	

Homeworks

1. Regression & Statistical Learning
2. Regularization & GD
3. Linear Classification & SVM
4. MLE & Conditional Probability Models
5. Decision/RFs & Boosting

Homeworks

In this section, we will post the biweekly homeworks for the semester. Check back here for the latest problem set!

Homework 0

Material:	Submitting & typesetting your homework	ps0-submission.zip, ps0.pdf
Release:	Monday, January 12th, 7:30 PM ET	
Due:	Friday, January 23rd, 11:59 PM ET	

Homework 1

Material:	Error decomposition and regression	ps1-statlearning.zip, ps1.pdf
Release:	Tuesday, January 20th, 2:30 PM ET	
Due:	Tuesday, February 3rd, 11:59 PM ET	

Homeworks

1. Regression & Statistical Learning
2. Regularization & GD
3. Linear Classification & SVM
4. MLE & Conditional Probability Models
5. Decision/RFs & Boosting
6. NNs

Homeworks

In this section, we will post the biweekly homeworks for the semester. Check back here for the latest problem set!

Homework 0

Material:	Submitting & typesetting your homework	ps0-submission.zip, ps0.pdf
Release:	Monday, January 12th, 7:30 PM ET	
Due:	Friday, January 23rd, 11:59 PM ET	

Homework 1

Material:	Error decomposition and regression	ps1-statlearning.zip, ps1.pdf
Release:	Tuesday, January 20th, 2:30 PM ET	
Due:	Tuesday, February 3rd, 11:59 PM ET	

Homeworks

1. Regression & Statistical Learning
2. Regularization & GD
3. Linear Classification & SVM
4. MLE & Conditional Probability Models
5. Decision/RFs & Boosting
6. NNs
7. Generative Models & RL

Homeworks

In this section, we will post the biweekly homeworks for the semester. Check back here for the latest problem set!

Homework 0

Material:	Submitting & typesetting your homework	ps0-submission.zip, ps0.pdf
Release:	Monday, January 12th, 7:30 PM ET	
Due:	Friday, January 23rd, 11:59 PM ET	

Homework 1

Material:	Error decomposition and regression	ps1-statlearning.zip, ps1.pdf
Release:	Tuesday, January 20th, 2:30 PM ET	
Due:	Tuesday, February 3rd, 11:59 PM ET	

Homeworks

Homeworks

In this section, we will post the biweekly homeworks for the semester. Check back here for the latest problem set!

Homework 0

Material:	Submitting & typesetting your homework	ps0-submission.zip, ps0.pdf
Release:	Monday, January 12th, 7:30 PM ET	
Due:	Friday, January 23rd, 11:59 PM ET	

Homework 1

Material:	Error decomposition and regression	ps1-statlearning.zip, ps1.pdf
Release:	Tuesday, January 20th, 2:30 PM ET	
Due:	Tuesday, February 3rd, 11:59 PM ET	

Homeworks

1. Regression & Statistical Learning

Homeworks

In this section, we will post the biweekly homeworks for the semester. Check back here for the latest problem set!

Homework 0

Material:	Submitting & typesetting your homework	ps0-submission.zip, ps0.pdf
Release:	Monday, January 12th, 7:30 PM ET	
Due:	Friday, January 23rd, 11:59 PM ET	

Homework 1

Material:	Error decomposition and regression	ps1-statlearning.zip, ps1.pdf
Release:	Tuesday, January 20th, 2:30 PM ET	
Due:	Tuesday, February 3rd, 11:59 PM ET	

Homeworks

1. Regression & Statistical Learning
2. Regularization & GD

Homeworks

In this section, we will post the biweekly homeworks for the semester. Check back here for the latest problem set!

Homework 0

Material:	Submitting & typesetting your homework	ps0-submission.zip, ps0.pdf
Release:	Monday, January 12th, 7:30 PM ET	
Due:	Friday, January 23rd, 11:59 PM ET	

Homework 1

Material:	Error decomposition and regression	ps1-statlearning.zip, ps1.pdf
Release:	Tuesday, January 20th, 2:30 PM ET	
Due:	Tuesday, February 3rd, 11:59 PM ET	

Homeworks

1. Regression & Statistical Learning
2. Regularization & GD
3. Linear Classification & SVM

Homeworks

In this section, we will post the biweekly homeworks for the semester. Check back here for the latest problem set!

Homework 0

Material:	Submitting & typesetting your homework	ps0-submission.zip, ps0.pdf
Release:	Monday, January 12th, 7:30 PM ET	
Due:	Friday, January 23rd, 11:59 PM ET	

Homework 1

Material:	Error decomposition and regression	ps1-statlearning.zip, ps1.pdf
Release:	Tuesday, January 20th, 2:30 PM ET	
Due:	Tuesday, February 3rd, 11:59 PM ET	

Homeworks

1. Regression & Statistical Learning
2. Regularization & GD
3. Linear Classification & SVM
4. MLE & Conditional Probability Models

Homeworks

In this section, we will post the biweekly homeworks for the semester. Check back here for the latest problem set!

Homework 0

Material:	Submitting & typesetting your homework	ps0-submission.zip, ps0.pdf
Release:	Monday, January 12th, 7:30 PM ET	
Due:	Friday, January 23rd, 11:59 PM ET	

Homework 1

Material:	Error decomposition and regression	ps1-statlearning.zip, ps1.pdf
Release:	Tuesday, January 20th, 2:30 PM ET	
Due:	Tuesday, February 3rd, 11:59 PM ET	

Homeworks

1. Regression & Statistical Learning
2. Regularization & GD
3. Linear Classification & SVM
4. MLE & Conditional Probability Models
5. Decision/RFs & Boosting

Homeworks

In this section, we will post the biweekly homeworks for the semester. Check back here for the latest problem set!

Homework 0

Material:	Submitting & typesetting your homework	ps0-submission.zip, ps0.pdf
Release:	Monday, January 12th, 7:30 PM ET	
Due:	Friday, January 23rd, 11:59 PM ET	

Homework 1

Material:	Error decomposition and regression	ps1-statlearning.zip, ps1.pdf
Release:	Tuesday, January 20th, 2:30 PM ET	
Due:	Tuesday, February 3rd, 11:59 PM ET	

Homeworks

1. Regression & Statistical Learning
2. Regularization & GD
3. Linear Classification & SVM
4. MLE & Conditional Probability Models
5. Decision/RFs & Boosting
6. NNs

Homeworks

In this section, we will post the biweekly homeworks for the semester. Check back here for the latest problem set!

Homework 0

Material:	Submitting & typesetting your homework	ps0-submission.zip, ps0.pdf
Release:	Monday, January 12th, 7:30 PM ET	
Due:	Friday, January 23rd, 11:59 PM ET	

Homework 1

Material:	Error decomposition and regression	ps1-statlearning.zip, ps1.pdf
Release:	Tuesday, January 20th, 2:30 PM ET	
Due:	Tuesday, February 3rd, 11:59 PM ET	

Homeworks

1. Regression & Statistical Learning
2. Regularization & GD
3. Linear Classification & SVM
4. MLE & Conditional Probability Models
5. Decision/RFs & Boosting
6. NNs
7. Generative Models & RL

Homeworks

In this section, we will post the biweekly homeworks for the semester. Check back here for the latest problem set!

Homework 0

Material:	Submitting & typesetting your homework	ps0-submission.zip, ps0.pdf
Release:	Monday, January 12th, 7:30 PM ET	
Due:	Friday, January 23rd, 11:59 PM ET	

Homework 1

Material:	Error decomposition and regression	ps1-statlearning.zip, ps1.pdf
Release:	Tuesday, January 20th, 2:30 PM ET	
Due:	Tuesday, February 3rd, 11:59 PM ET	

LLM Policy

LLM Policy

Don't use LLMs

LLM Policy

LLM Policy

You are not allowed to use
LLMs like ChatGPT or Cursor
for homework or final projects

LLM Policy

You are not allowed to use
LLMs like ChatGPT or Cursor
for homework or final projects

LLMs are great! But there's a
growing body of evidence
that LLMs can harm learning

LLM Policy

You are not allowed to use
LLMs like ChatGPT or Cursor
for homework or final projects

LLMs are great! But there's a
growing body of evidence
that LLMs can harm learning

Using LLMs on homeworks
may leave you unprepared for
the midterm exam

LLM Policy

Nicholas Tomlin

TTIC
Verified email at berkeley.edu - [Homepage](#)

Natural Language Processing Artificial Intelligence Machine Learning

<input type="checkbox"/>	TITLE		⋮	CITED BY	YEAR
<input type="checkbox"/>	Ghostbuster: Detecting text ghostwritten by large language models	V Verma, E Fleisig, N Tomlin, D Klein	NAACL	202	2024
<input type="checkbox"/>	Autonomous evaluation and refinement of digital agents	J Pan, Y Zhang, N Tomlin, Y Zhou, S Levine, A Suhr	COLM	125	2024
<input type="checkbox"/>	Decision-oriented dialogue for human-AI collaboration	J Lin*, N Tomlin*, J Andreas, J Eisner	TACL	72	2024

The screenshot shows a scholar profile for Nicholas Tomlin. The profile includes a circular photo of him wearing glasses and a black t-shirt with a camera icon. His name is listed with a pencil icon for editing. He is associated with TTIC and has a verified email at berkeley.edu with a link to his homepage. His research interests are listed as Natural Language Processing, Artificial Intelligence, and Machine Learning. A blue 'FOLLOW' button is visible. Below the profile, a list of his publications is shown in a table format. The first publication, 'Ghostbuster: Detecting text ghostwritten by large language models', is circled in red. The table has columns for a checkbox, title, authors, conference, citations, and year. The circled publication has 202 citations and was published in 2024.

LLM Policy

You are not allowed to use LLMs like ChatGPT or Cursor for homework or final projects

Nicholas Tomlin [!\[\]\(30a37b1cb5aaf0342cce77735ceb91b4_img.jpg\)](#)

TTIC
Verified email at berkeley.edu - [Homepage](#)

Natural Language Processing Artificial Intelligence Machine Learning

[FOLLOW](#)

TITLE	CITED BY	YEAR
<input type="checkbox"/> Ghostbuster: Detecting text ghostwritten by large language models V Verma, E Fleisig, N Tomlin, D Klein NAACL	202	2024
<input type="checkbox"/> Autonomous evaluation and refinement of digital agents J Pan, Y Zhang, N Tomlin, Y Zhou, S Levine, A Suhr COLM	125	2024
<input type="checkbox"/> Decision-oriented dialogue for human-AI collaboration J Lin*, N Tomlin*, J Andreas, J Eisner TACL	72	2024

LLM Policy

You are not allowed to use LLMs like ChatGPT or Cursor for homework or final projects

LLMs are great! But there's a growing body of evidence that LLMs can harm learning

Nicholas Tomlin [Edit](#)

TTIC
Verified email at berkeley.edu - [Homepage](#)

Natural Language Processing Artificial Intelligence Machine Learning

[FOLLOW](#)

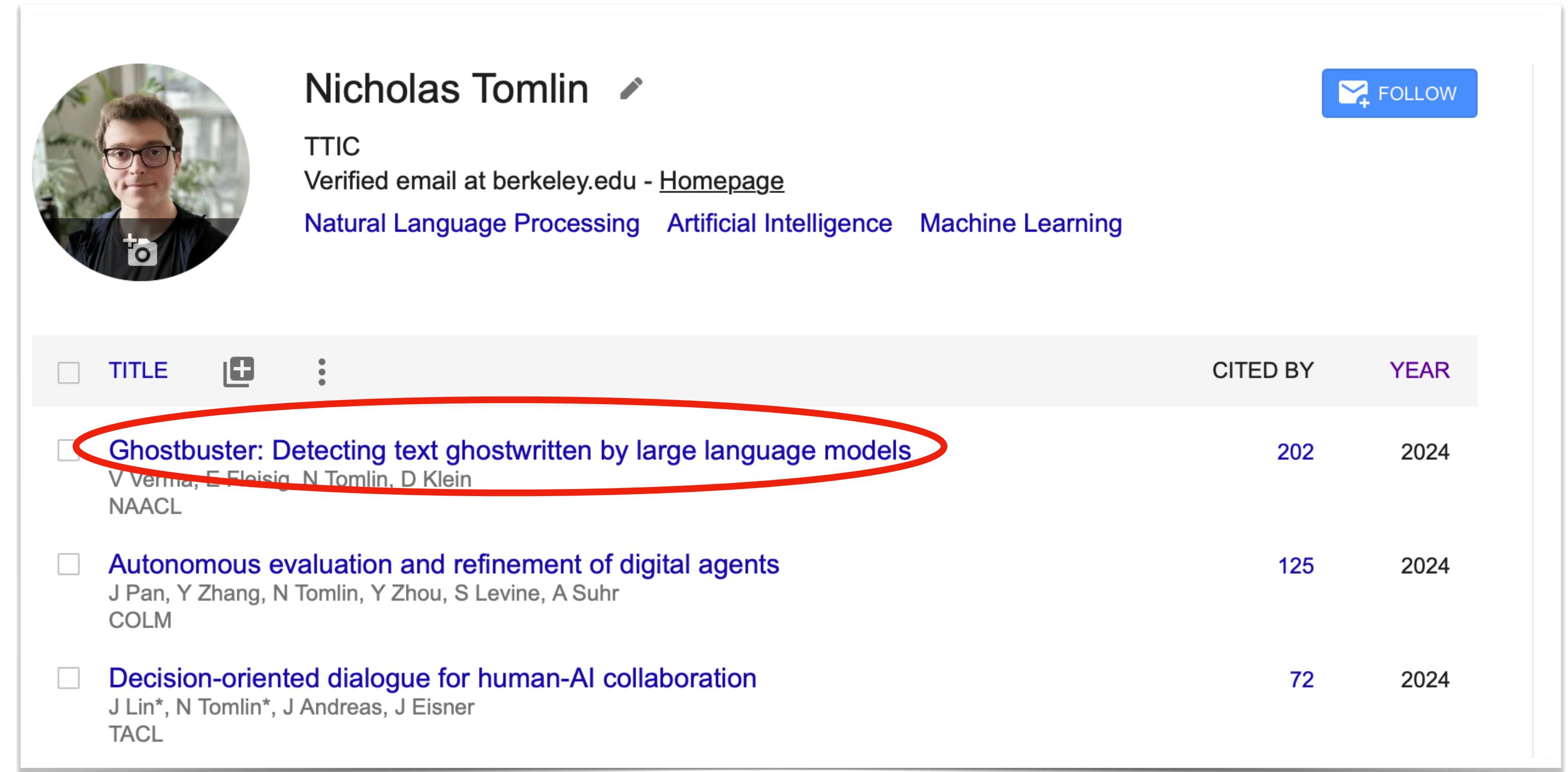
TITLE	CITED BY	YEAR
<input type="checkbox"/> Ghostbuster: Detecting text ghostwritten by large language models V Verma, E Fleisig, N Tomlin, D Klein NAACL	202	2024
<input type="checkbox"/> Autonomous evaluation and refinement of digital agents J Pan, Y Zhang, N Tomlin, Y Zhou, S Levine, A Suhr COLM	125	2024
<input type="checkbox"/> Decision-oriented dialogue for human-AI collaboration J Lin*, N Tomlin*, J Andreas, J Eisner TACL	72	2024

LLM Policy

You are not allowed to use LLMs like ChatGPT or Cursor for homework or final projects

LLMs are great! But there's a growing body of evidence that LLMs can harm learning

Using LLMs on homeworks may leave you unprepared for the midterm exam



Nicholas Tomlin

TTIC
Verified email at berkeley.edu - [Homepage](#)

Natural Language Processing Artificial Intelligence Machine Learning

TITLE CITED BY YEAR

<input type="checkbox"/> Ghostbuster: Detecting text ghostwritten by large language models V Verma, E Fleisig, N Tomlin, D Klein NAACL	202	2024
<input type="checkbox"/> Autonomous evaluation and refinement of digital agents J Pan, Y Zhang, N Tomlin, Y Zhou, S Levine, A Suhr COLM	125	2024
<input type="checkbox"/> Decision-oriented dialogue for human-AI collaboration J Lin*, N Tomlin*, J Andreas, J Eisner TACL	72	2024

LLM Policy

Nicholas Tomlin

TTIC
Verified email at berkeley.edu - [Homepage](#)

Natural Language Processing Artificial Intelligence Machine Learning

<input type="checkbox"/>	TITLE		:	CITED BY	YEAR
<input type="checkbox"/>	Ghostbuster: Detecting text ghostwritten by large language models	202	2024		
	V Verma, E Fleisig, N Tomlin, D Klein		NAACL		
<input type="checkbox"/>	Autonomous evaluation and refinement of digital agents	125	2024		
	J Pan, Y Zhang, N Tomlin, Y Zhou, S Levine, A Suhr		COLM		
<input type="checkbox"/>	Decision-oriented dialogue for human-AI collaboration	72	2024		
	J Lin*, N Tomlin*, J Andreas, J Eisner		TACL		

LLM Policy

You are not allowed to use LLMs like ChatGPT or Cursor for homework or final projects

Nicholas Tomlin [!\[\]\(37c317fc79575e78fff8cac194ea47ac_img.jpg\)](#)

TTIC
Verified email at berkeley.edu - [Homepage](#)

Natural Language Processing Artificial Intelligence Machine Learning

[FOLLOW](#)

TITLE	CITED BY	YEAR
<input type="checkbox"/> Ghostbuster: Detecting text ghostwritten by large language models V Verma, E Fleisig, N Tomlin, D Klein NAACL	202	2024
<input type="checkbox"/> Autonomous evaluation and refinement of digital agents J Pan, Y Zhang, N Tomlin, Y Zhou, S Levine, A Suhr COLM	125	2024
<input type="checkbox"/> Decision-oriented dialogue for human-AI collaboration J Lin*, N Tomlin*, J Andreas, J Eisner TACL	72	2024

LLM Policy

You are not allowed to use LLMs like ChatGPT or Cursor for homework or final projects

LLMs are great! But there's a growing body of evidence that LLMs can harm learning

Nicholas Tomlin [Edit](#)

TTIC
Verified email at berkeley.edu - [Homepage](#)

Natural Language Processing Artificial Intelligence Machine Learning

[FOLLOW](#)

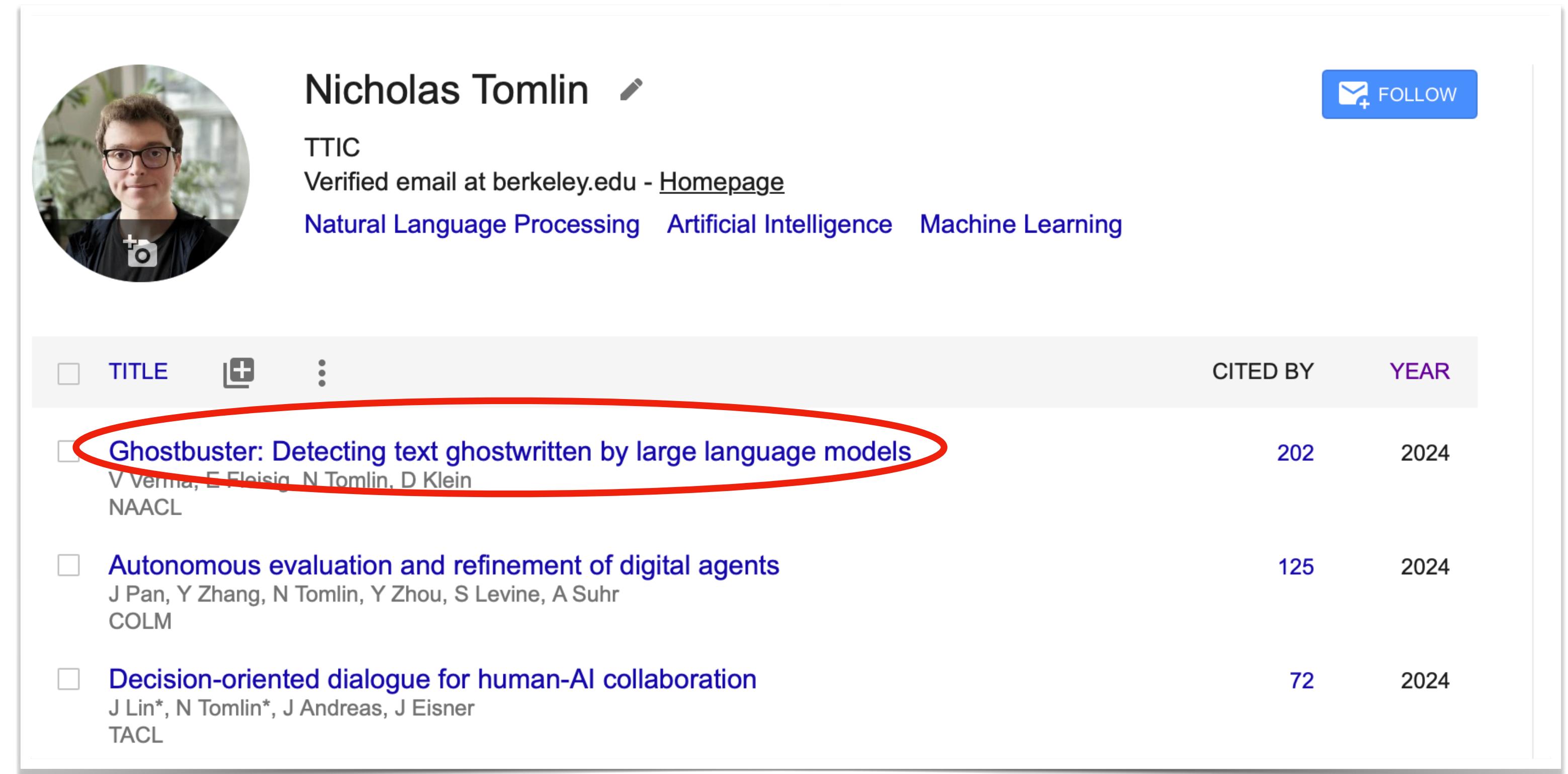
TITLE	CITED BY	YEAR
<input type="checkbox"/> Ghostbuster: Detecting text ghostwritten by large language models V Verma, E Fleisig, N Tomlin, D Klein NAACL	202	2024
<input type="checkbox"/> Autonomous evaluation and refinement of digital agents J Pan, Y Zhang, N Tomlin, Y Zhou, S Levine, A Suhr COLM	125	2024
<input type="checkbox"/> Decision-oriented dialogue for human-AI collaboration J Lin*, N Tomlin*, J Andreas, J Eisner TACL	72	2024

LLM Policy

You are not allowed to use LLMs like ChatGPT or Cursor for homework or final projects

LLMs are great! But there's a growing body of evidence that LLMs can harm learning

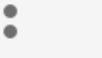
Using LLMs on homeworks may leave you unprepared for the midterm exam



Nicholas Tomlin

TTIC
Verified email at berkeley.edu - [Homepage](#)

Natural Language Processing Artificial Intelligence Machine Learning

TITLE  CITED BY YEAR

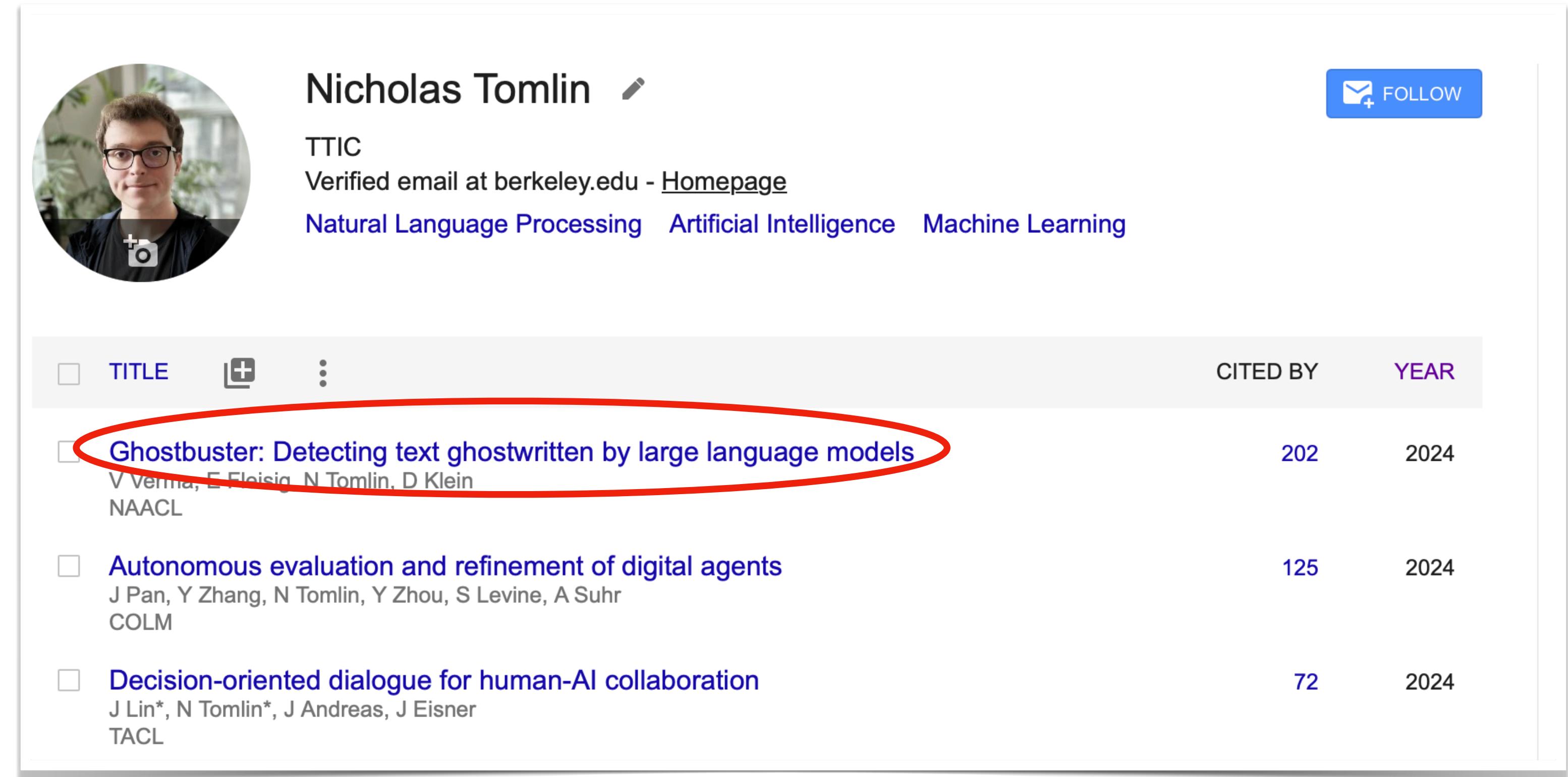
<input type="checkbox"/> Ghostbuster: Detecting text ghostwritten by large language models V Verma, E Fleisig, N Tomlin, D Klein NAACL	202	2024
<input type="checkbox"/> Autonomous evaluation and refinement of digital agents J Pan, Y Zhang, N Tomlin, Y Zhou, S Levine, A Suhr COLM	125	2024
<input type="checkbox"/> Decision-oriented dialogue for human-AI collaboration J Lin*, N Tomlin*, J Andreas, J Eisner TACL	72	2024

LLM Policy

You are not allowed to use LLMs like ChatGPT or Cursor for homework or final projects

LLMs are great! But there's a growing body of evidence that LLMs can harm learning

Using LLMs on homeworks may leave you unprepared for the midterm exam



Nicholas Tomlin [edit](#) [FOLLOW](#)

TTIC
Verified email at berkeley.edu - [Homepage](#)

Natural Language Processing Artificial Intelligence Machine Learning

TITLE	CITED BY	YEAR
Ghostbuster: Detecting text ghostwritten by large language models V Verma, E Fleisig, N Tomlin, D Klein NAACL	202	2024
Autonomous evaluation and refinement of digital agents J Pan, Y Zhang, N Tomlin, Y Zhou, S Levine, A Suhr COLM	125	2024
Decision-oriented dialogue for human-AI collaboration J Lin*, N Tomlin*, J Andreas, J Eisner TACL	72	2024

One exception: coding tools like Cursor and Claude Code are allowed if you are doing the "research track" for the final project. However, using LLMs for writing your final report is not allowed under either track.

Accommodations

Accommodations

If you need accommodations for the midterm or have accessibility concerns, please contact the Moses Center for Disabilities: mosescsd@nyu.edu

Accommodations

If you need accommodations for the midterm or have accessibility concerns, please contact the Moses Center for Disabilities: mosescsd@nyu.edu

Accommodations

If you need accommodations for the midterm or have accessibility concerns, please contact the Moses Center for Disabilities: mosescsd@nyu.edu

If there are things we can do to help accommodate, let us know.

Key dates and deadlines

Key dates and deadlines

Jan 23rd: Homework 0 due

Key dates and deadlines

Jan 23rd: Homework 0 due

Feb 2nd: last day to add/drop classes on Albert

Key dates and deadlines

Jan 23rd: Homework 0 due

Feb 2nd: last day to add/drop classes on Albert

Feb 3rd: Homework 1 due

Key dates and deadlines

Jan 23rd: Homework 0 due

Feb 2nd: last day to add/drop classes on Albert

Feb 3rd: Homework 1 due

Feb 28th: project groups formed

Key dates and deadlines

Jan 23rd: Homework 0 due

Feb 2nd: last day to add/drop classes on Albert

Feb 3rd: Homework 1 due

Feb 28th: project groups formed

Mar 10th: midterm, in-class

Should I take this class?

Should I take this class?

Yes, if:

Should I take this class?

Yes, if:

- You are a CDS MS or PhD student

Should I take this class?

Yes, if:

- You are a CDS MS or PhD student
- You have familiarity with linear algebra, calculus, and basic programming

Should I take this class?

Yes, if:

- You are a CDS MS or PhD student
- You have familiarity with linear algebra, calculus, and basic programming
- You have taken DS-GA 1001 and DS-GA 1002

Should I take this class?

Yes, if:

- You are a CDS MS or PhD student
- You have familiarity with linear algebra, calculus, and basic programming
- You have taken DS-GA 1001 and DS-GA 1002
- You are available on Tuesday, March 10th from 2:45-4:45PM

Should I take this class?

Should I take this class?

Yes, if:

Should I take this class?

Yes, if:

- You are a CDS MS or PhD student

Should I take this class?

Yes, if:

- You are a CDS MS or PhD student
- You have familiarity with linear algebra, calculus, and basic programming

Should I take this class?

Yes, if:

- You are a CDS MS or PhD student
- You have familiarity with linear algebra, calculus, and basic programming
- You have taken DS-GA 1001 and DS-GA 1002

Should I take this class?

Yes, if:

- You are a CDS MS or PhD student
- You have familiarity with linear algebra, calculus, and basic programming
- You have taken DS-GA 1001 and DS-GA 1002
- You are available on Tuesday, March 10th from 2:45-4:45PM

Should I take this class?

Yes, if:

- You are a CDS MS or PhD student
- You have familiarity with linear algebra, calculus, and basic programming
- You have taken DS-GA 1001 and DS-GA 1002
- You are available on Tuesday, March 10th from 2:45-4:45PM

Should I take this class?

Yes, if:

- You are a CDS MS or PhD student
- You have familiarity with linear algebra, calculus, and basic programming
- You have taken DS-GA 1001 and DS-GA 1002
- You are available on Tuesday, March 10th from 2:45-4:45PM

If you think you have equivalent experience but haven't met the prerequisites: please email us your transcript and relevant course syllabi and we can review your waiver request

Enrollment priority

Enrollment priority

Currently: 154 students (max of 200)

Enrollment priority

Currently: 154 students (max of 200)

Priority order for registration:

Enrollment priority

Currently: 154 students (max of 200)

Priority order for registration:

- Data science graduate students (MS and PhD)

Enrollment priority

Currently: 154 students (max of 200)

Priority order for registration:

- Data science graduate students (MS and PhD)
- Non-data science PhD students: please ask your advisor to reach out to Tina Lam (tina.lam@nyu.edu) to request your enrollment in this course

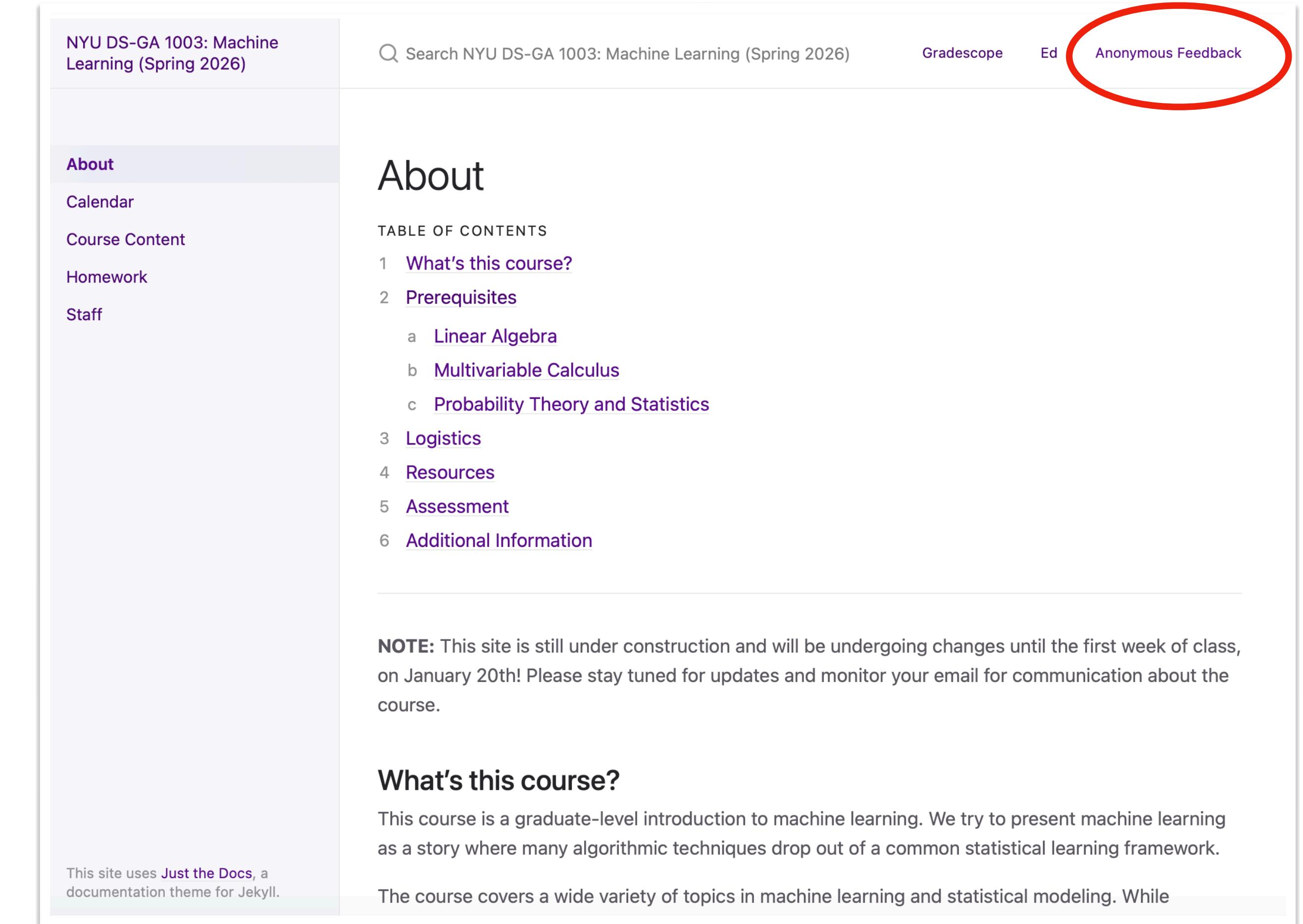
Enrollment priority

Currently: 154 students (max of 200)

Priority order for registration:

- Data science graduate students (MS and PhD)
- Non-data science PhD students: please ask your advisor to reach out to Tina Lam (tina.lam@nyu.edu) to request your enrollment in this course
- MS students from other departments with appropriate prerequisites: registration should now be open. If you have issues, please contact cds-masters@nyu.edu

Anonymous Feedback



NYU DS-GA 1003: Machine Learning (Spring 2026)

Search NYU DS-GA 1003: Machine Learning (Spring 2026)

Gradescope

Ed

Anonymous Feedback

About

Calendar

Course Content

Homework

Staff

About

TABLE OF CONTENTS

- 1 [What's this course?](#)
- 2 [Prerequisites](#)
 - a [Linear Algebra](#)
 - b [Multivariable Calculus](#)
 - c [Probability Theory and Statistics](#)
- 3 [Logistics](#)
- 4 [Resources](#)
- 5 [Assessment](#)
- 6 [Additional Information](#)

NOTE: This site is still under construction and will be undergoing changes until the first week of class, on January 20th! Please stay tuned for updates and monitor your email for communication about the course.

What's this course?

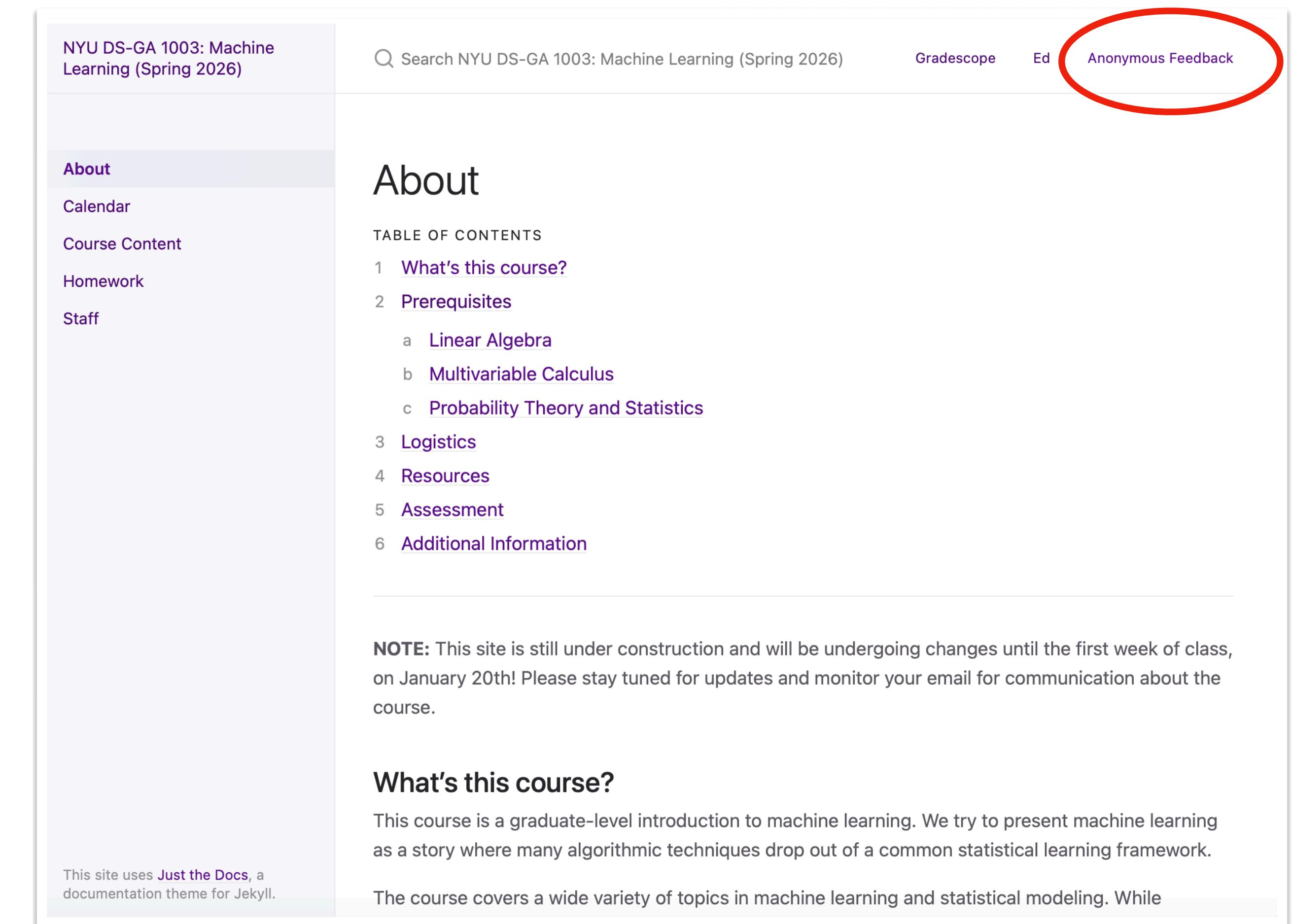
This course is a graduate-level introduction to machine learning. We try to present machine learning as a story where many algorithmic techniques drop out of a common statistical learning framework.

The course covers a wide variety of topics in machine learning and statistical modeling. While

This site uses [Just the Docs](#), a documentation theme for Jekyll.

Anonymous Feedback

We want to provide a good learning experience and improve this course for future semesters!



NYU DS-GA 1003: Machine Learning (Spring 2026)

Search NYU DS-GA 1003: Machine Learning (Spring 2026)

Gradescope Ed **Anonymous Feedback**

About

Calendar

Course Content

Homework

Staff

TABLE OF CONTENTS

- 1 [What's this course?](#)
- 2 [Prerequisites](#)
 - a [Linear Algebra](#)
 - b [Multivariable Calculus](#)
 - c [Probability Theory and Statistics](#)
- 3 [Logistics](#)
- 4 [Resources](#)
- 5 [Assessment](#)
- 6 [Additional Information](#)

NOTE: This site is still under construction and will be undergoing changes until the first week of class, on January 20th! Please stay tuned for updates and monitor your email for communication about the course.

What's this course?

This course is a graduate-level introduction to machine learning. We try to present machine learning as a story where many algorithmic techniques drop out of a common statistical learning framework.

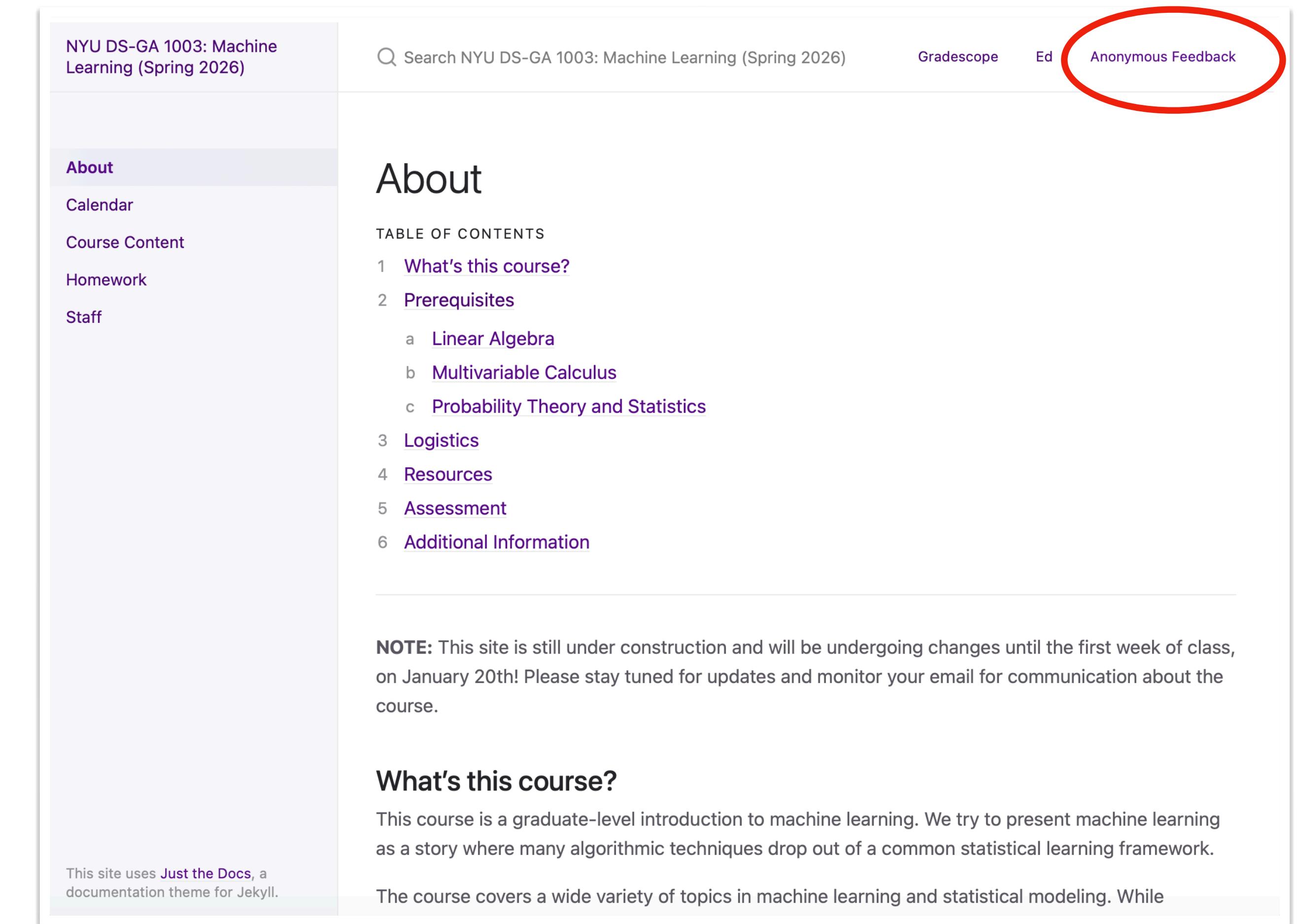
The course covers a wide variety of topics in machine learning and statistical modeling. While

This site uses [Just the Docs](#), a documentation theme for Jekyll.

Anonymous Feedback

We want to provide a good learning experience and improve this course for future semesters!

Anonymous feedback form
available at all times.



NYU DS-GA 1003: Machine Learning (Spring 2026)

Search NYU DS-GA 1003: Machine Learning (Spring 2026)

Gradescope Ed **Anonymous Feedback**

About

Calendar

Course Content

Homework

Staff

TABLE OF CONTENTS

- 1 [What's this course?](#)
- 2 [Prerequisites](#)
 - a [Linear Algebra](#)
 - b [Multivariable Calculus](#)
 - c [Probability Theory and Statistics](#)
- 3 [Logistics](#)
- 4 [Resources](#)
- 5 [Assessment](#)
- 6 [Additional Information](#)

NOTE: This site is still under construction and will be undergoing changes until the first week of class, on January 20th! Please stay tuned for updates and monitor your email for communication about the course.

What's this course?

This course is a graduate-level introduction to machine learning. We try to present machine learning as a story where many algorithmic techniques drop out of a common statistical learning framework.

The course covers a wide variety of topics in machine learning and statistical modeling. While

This site uses [Just the Docs](#), a documentation theme for Jekyll.

Outline

Course Overview and Logistics

Introduction to Machine Learning

Statistical Learning Setup

Statistical Learning: Bayes Risk

Statistical Learning: Empirical Risk and ERM

Statistical Learning: Hypothesis Class

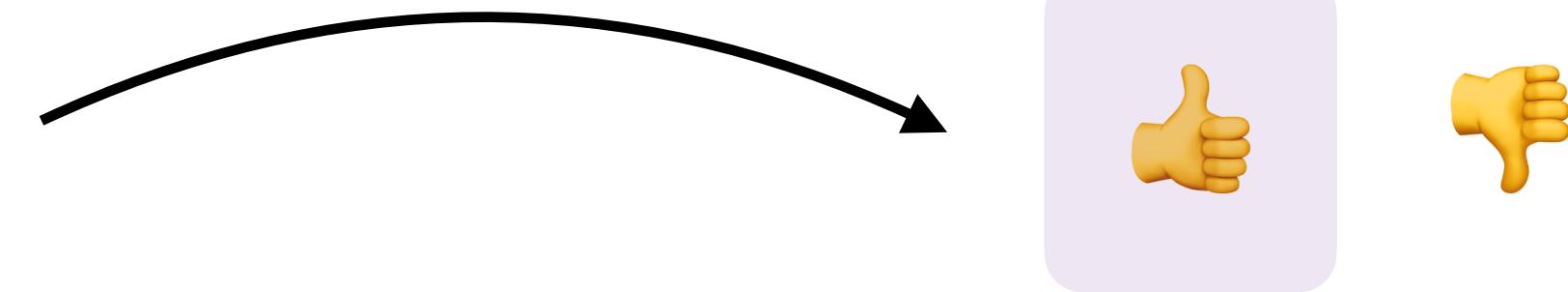
Excess Risk Decomposition and Three Types of Error

Given a dataset of photos of cats, predict the breed of a cat.

“Siamese”

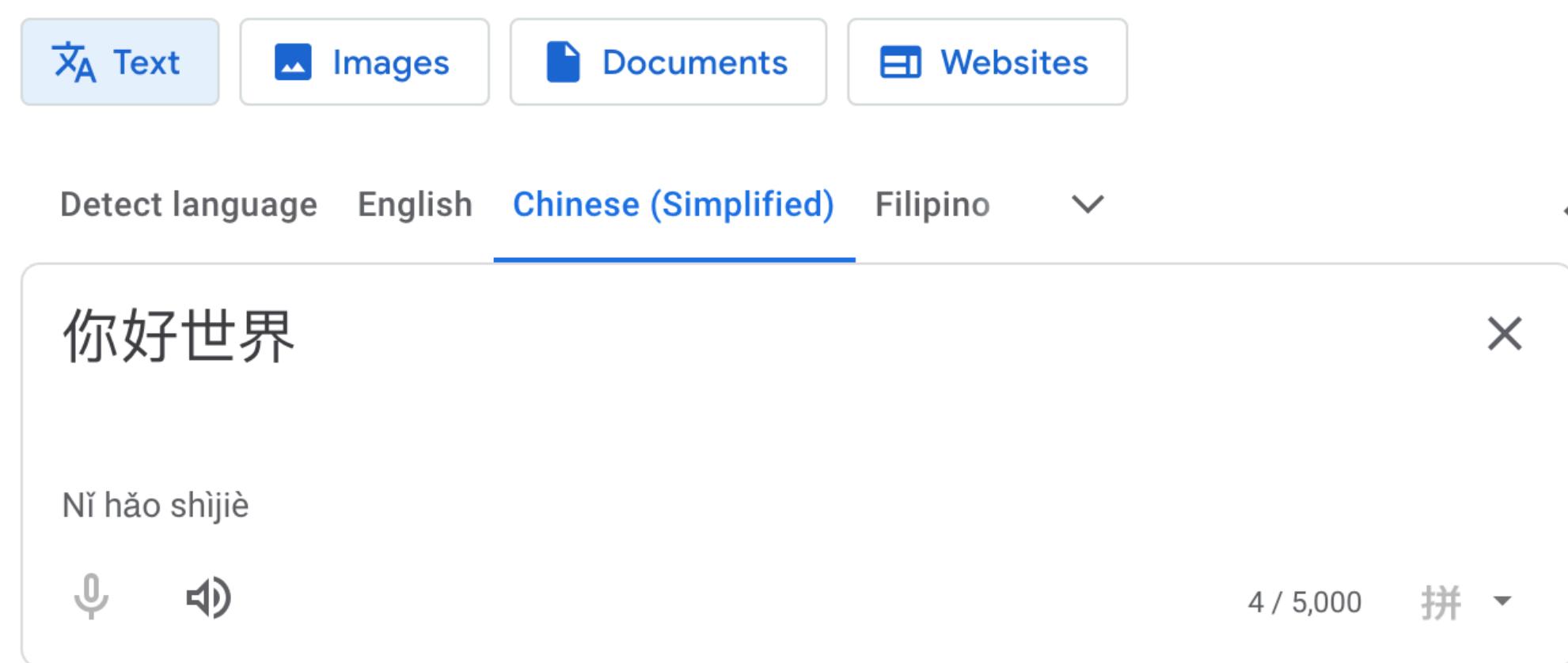
By Karin Langner-Bahmann, upload von Martin Bahmann - Own work, CC BY-SA 3.0, <https://commons.wikimedia.org/w/index.php?curid=3020045>

Given a dataset of music listeners and songs, predict whether a user likes a song.



By <https://open.spotify.com/album/26ZV7BuCkdY3INkETgEJ0e?si=-5kn-WvIQsesSQGof-BD3w>, Fair use, <https://en.wikipedia.org/w/index.php?curid=4897516>

Given a written Chinese sentence, return the English translation.



The image shows a digital interface for translating text. At the top, there are four buttons: 'Text' (selected), 'Images', 'Documents', and 'Websites'. Below this, a 'Detect language' dropdown is set to 'English', and a 'Source language' dropdown is set to 'Chinese (Simplified)', with 'Filipino' as an option. The main area contains the Chinese text '你好世界' (Nǐ hǎo shìjìè) and its English translation 'Hello world'. The Chinese text is accompanied by its Pinyin transcription 'Nǐ hǎo shìjìè'. There are also icons for microphone and speaker, and a progress bar indicating '4 / 5,000' and a '拼' (pinyin) button. A large black arrow points from the Chinese text to the English translation.

Given a dataset of meteorological measurements, forecast the temperature.

humidity	wind (mph)	cloud cover	month	pressure (in)
33%	7	2	march	29

81

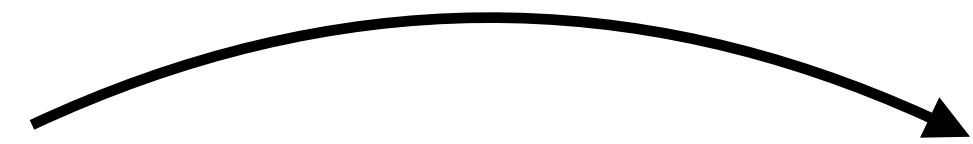
Given a written English text passage, predict the (“most probable”) next word.

It is a truth universally acknowledged, that a single man in possession
of a good

...fortune, must be in want of a wife.

— Jane Austen, *Pride and Prejudice* (1813)

That's the famous opening line — would you like me to continue the paragraph, or do a short literary analysis of why this sentence is so iconic?



“fortune”

“Traditional Programs” vs. Machine Learning

Many problems are difficult to “program by hand.”

Image recognition, language processing, product recommendation, etc.

Machine learning approach: construct an algorithm that learns ~~automatically~~ from data or experience, and output a program, typically to solve a prediction problem:

Given an input x , predict the output y .

“Traditional Programs”

Suppose we want to classify handwritten digits (example: MNIST dataset).

How would you handwrite code to distinguish between digits?

Example: Image Classification

Binary Classification

Given an input x , predict the output y .

Input x : 1000x1000 pixel image of a cat or dog.

Output y : "CAT" or "DOG"

This is a binary classification problem, where y is one of two possible outputs.

Example: Medical Diagnosis

Multiclass Classification

Given an input x , predict the output y .

Input x : Symptoms of an individual patient (*fever, cough, nausea...*)

Output y : Diagnosis (*pneumonia, flu, cold, bronchitis, ...*)

This is a multiclass classification problem, where y is from a *discrete* set of possible outputs.

$$\Pr(\text{pneumonia}) = 0.7$$

$$\Pr(\text{flu}) = 0.1$$

⋮

Example: Stock Price Prediction

Regression

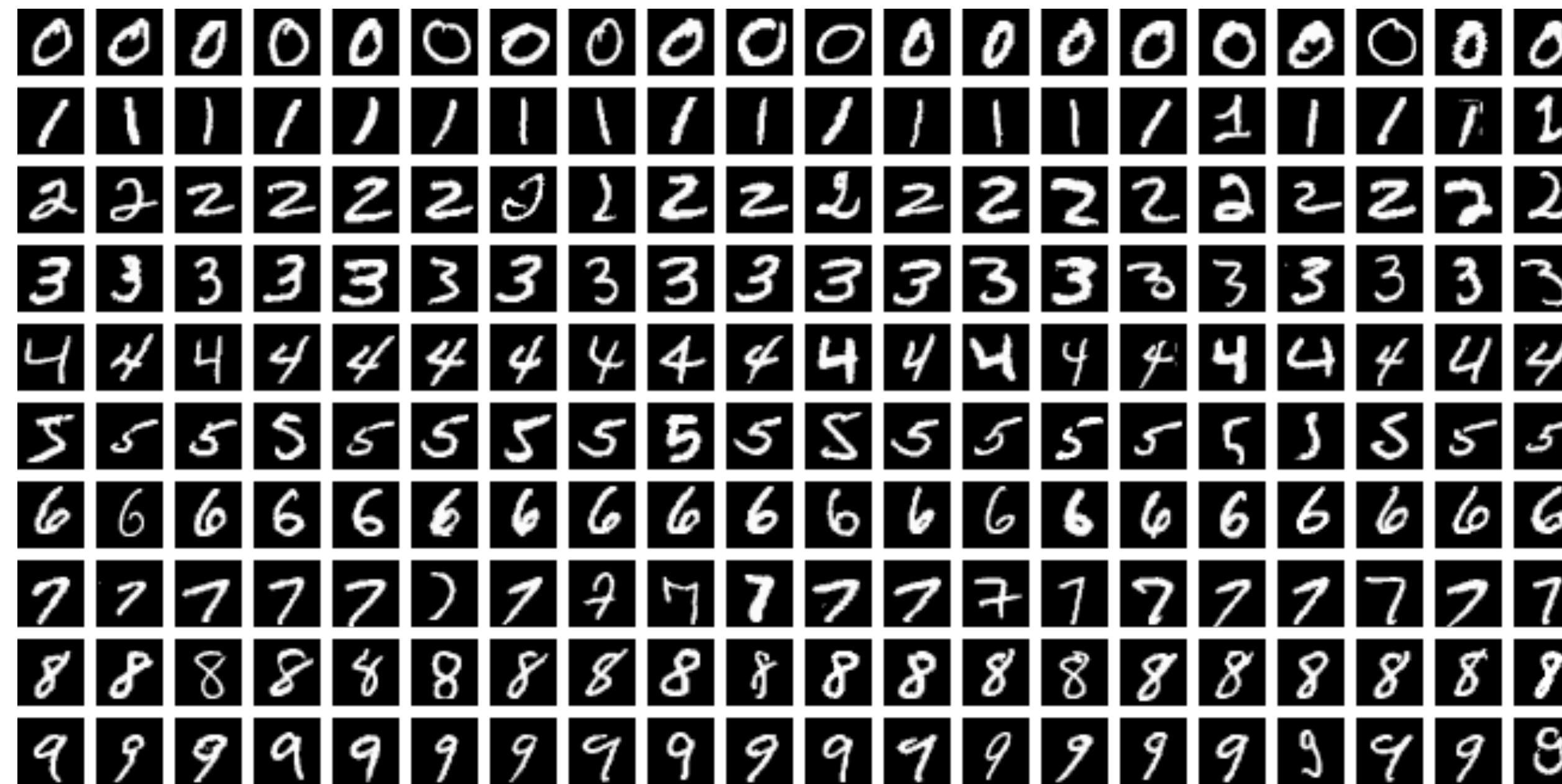
Given an input x , predict the output y .

Input x : History of stock prices, volume of stock.

Output y : Price of a stock at the close of the next day.

This is a regression problem, where y is a *continuous* output.

Machine Learning Approach



Suppose we want to classify handwritten digits (example: MNIST dataset).

Gather a labeled dataset of inputs and outputs.

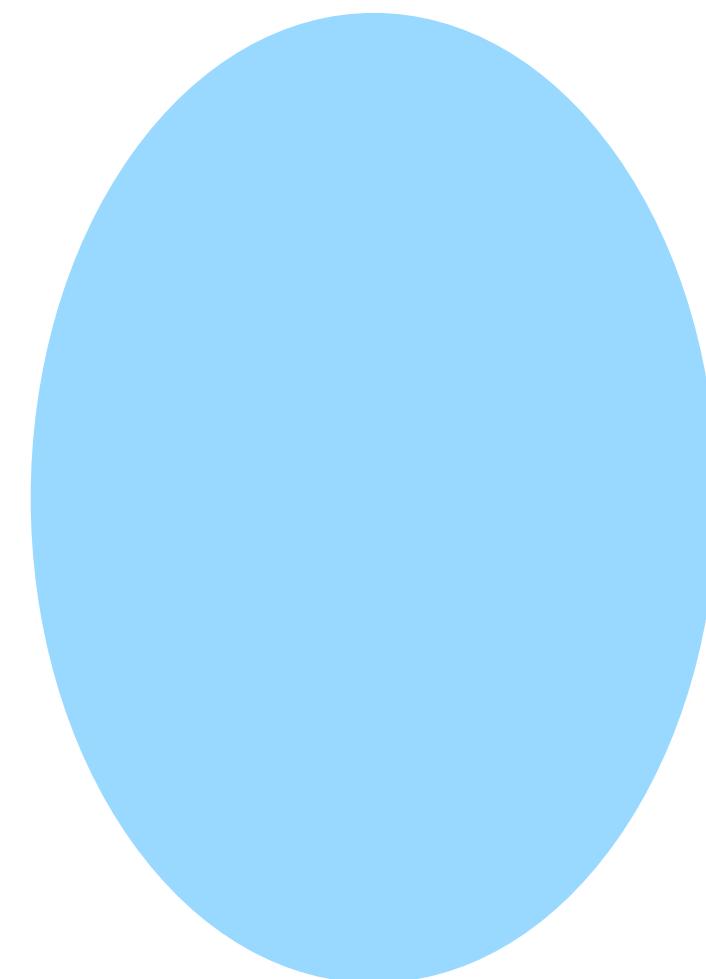
Use this data to “automatically” find the best rule for classifying digits.

Supervised Machine Learning

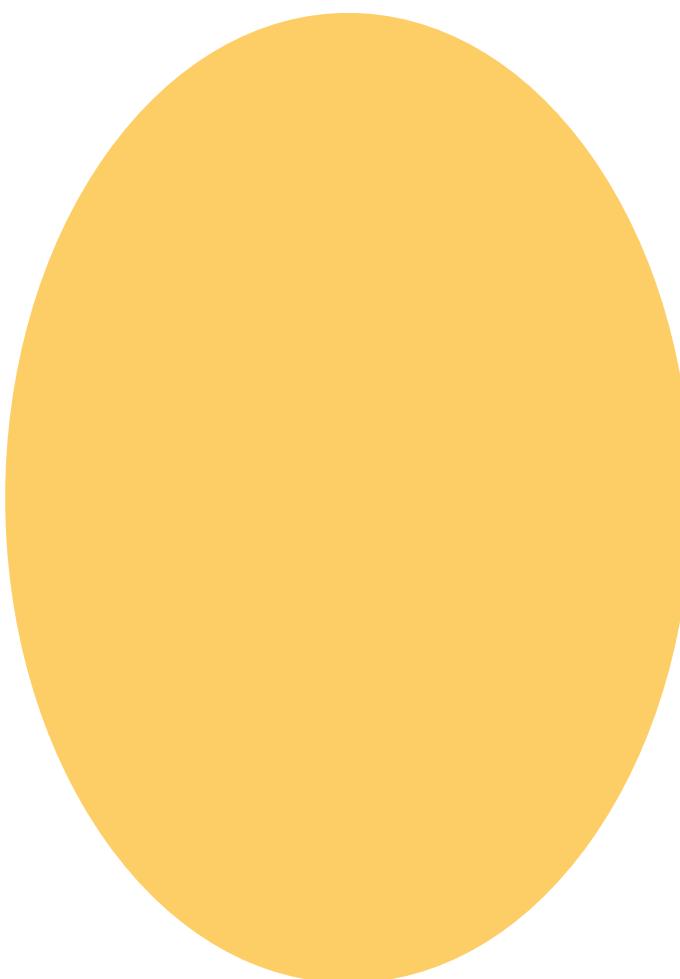
A Definition

$$D_n := \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})\}$$

The study of *making predictions* from data.



\mathcal{X}



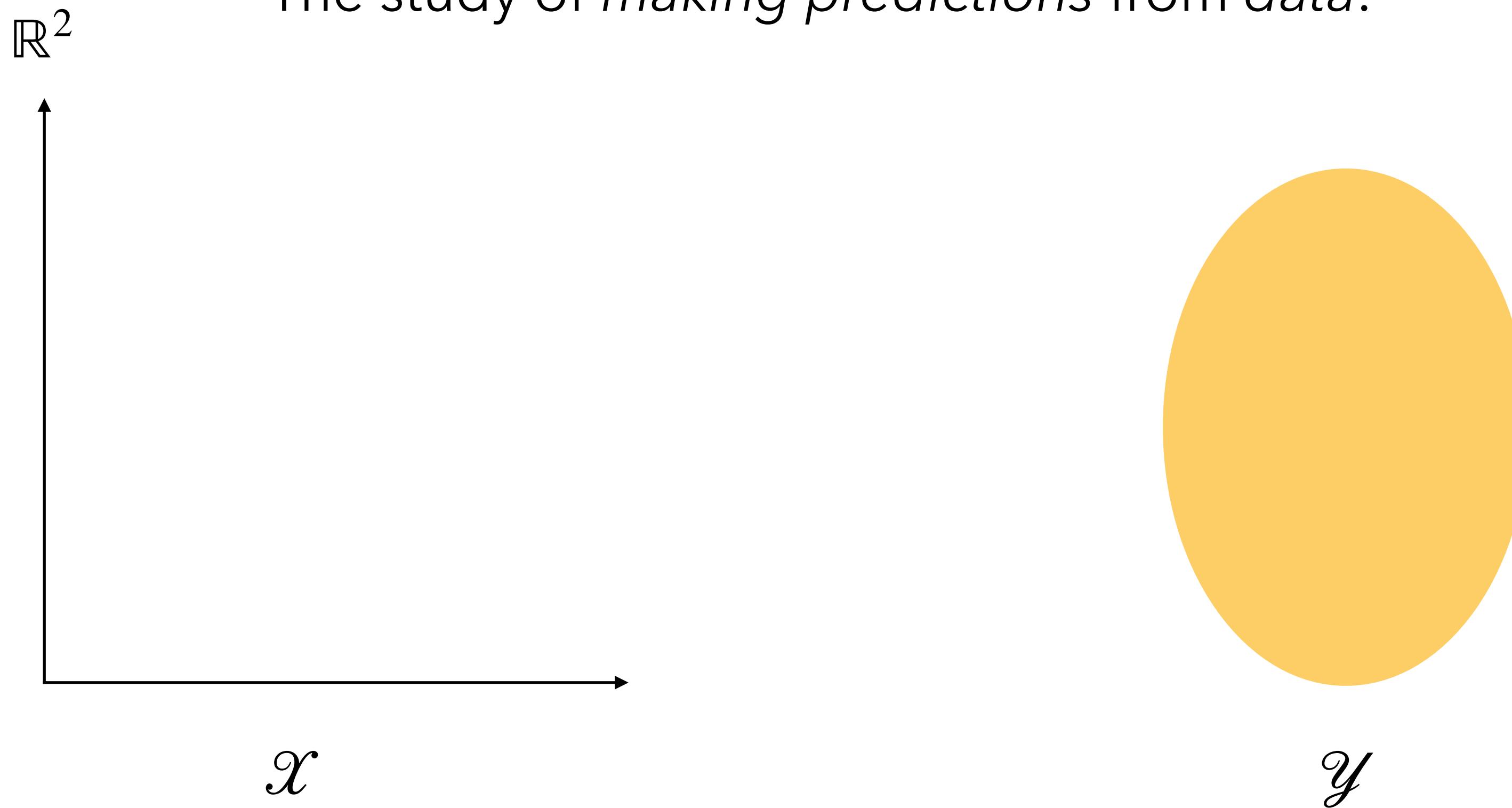
\mathcal{Y}

Supervised Machine Learning

A Definition

$$D_n := \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})\}$$

The study of *making predictions* from data.

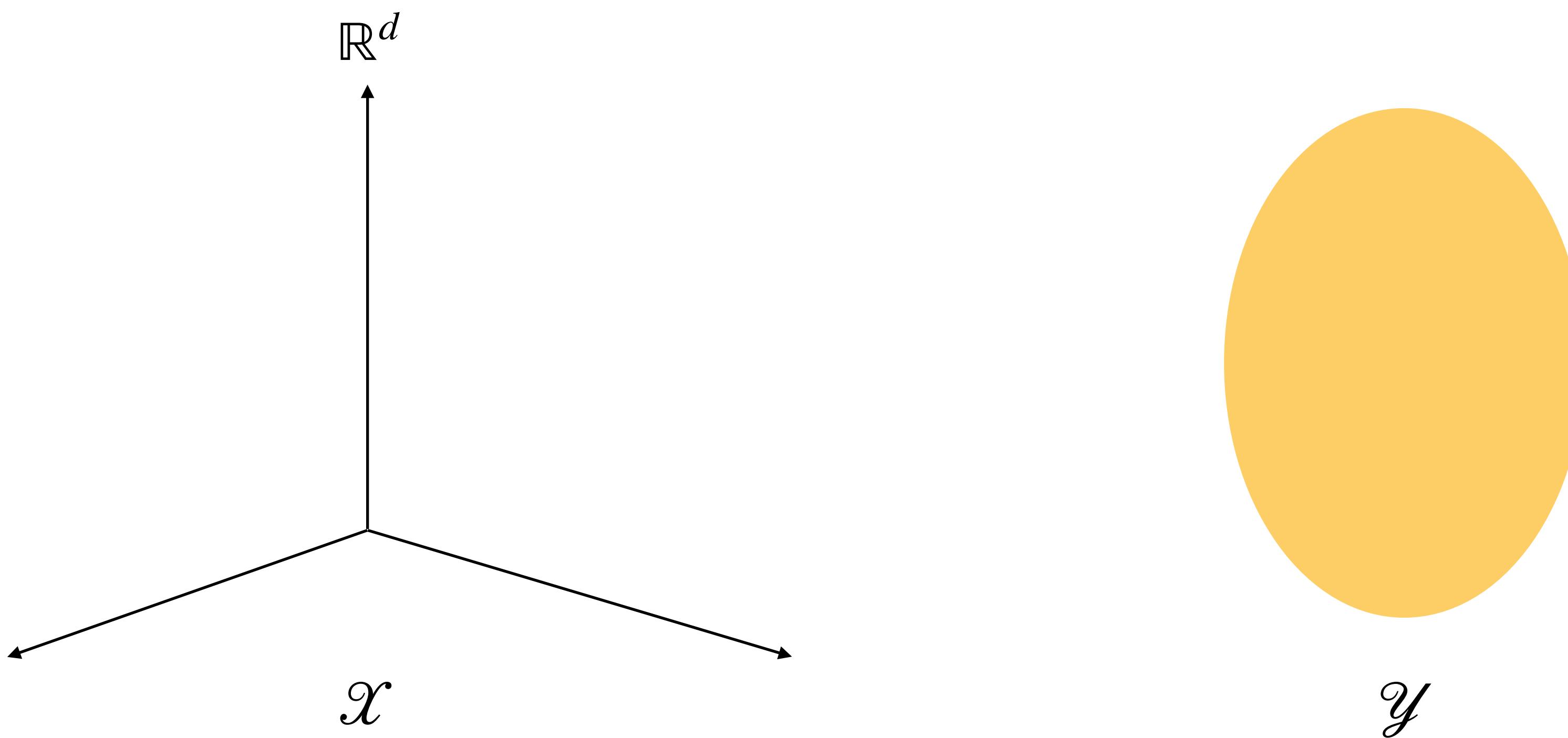


Supervised Machine Learning

A Definition

$$D_n := \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})\}$$

The study of *making predictions* from data.

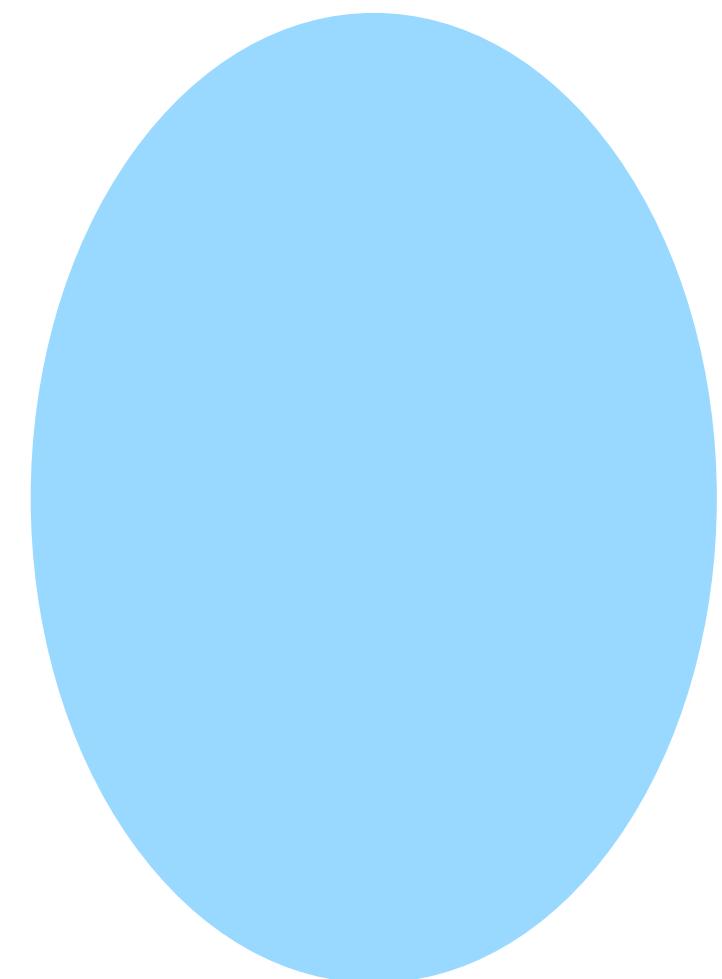


Supervised Machine Learning

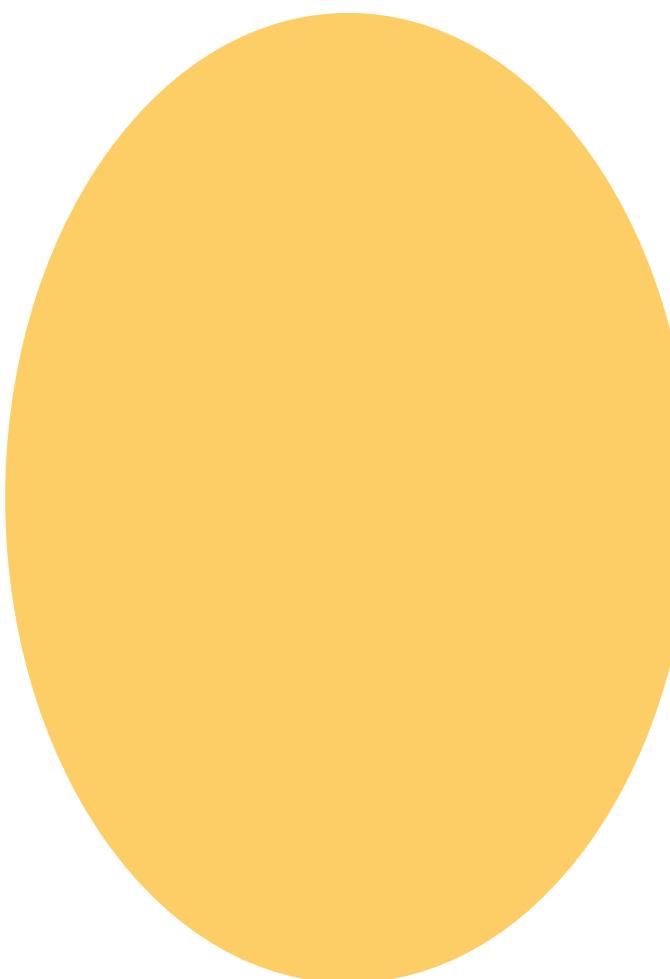
A Definition

$$D_n := \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})\}$$

The study of *making predictions* from data.



\mathcal{X}



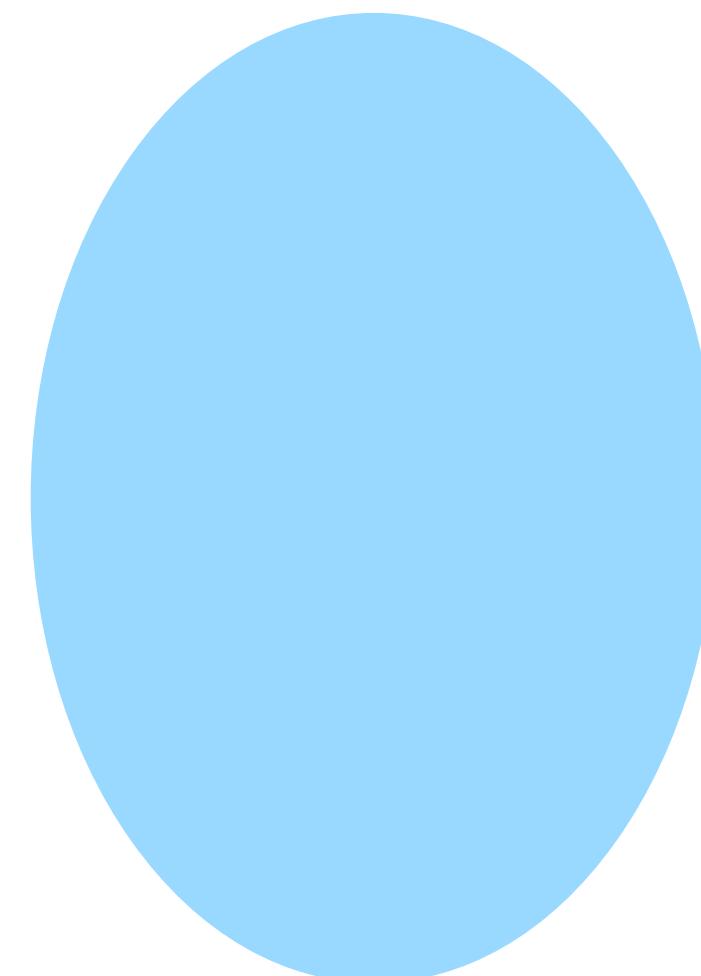
\mathcal{Y}

Supervised Machine Learning

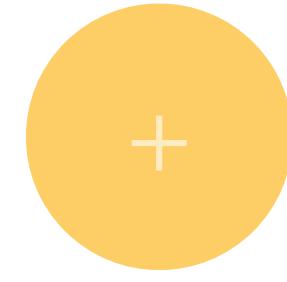
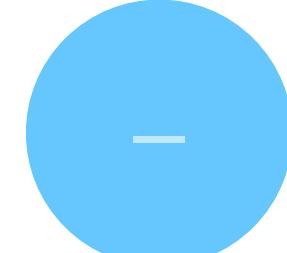
A Definition

$$D_n := \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})\}$$

The study of *making predictions* from data.



\mathcal{X}



\mathcal{Y}

Supervised Machine Learning

A Definition

$$D_n := \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})\}$$

The study of *making predictions* from data.

Supervised Machine Learning

A Definition

$$D_n := \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})\}$$

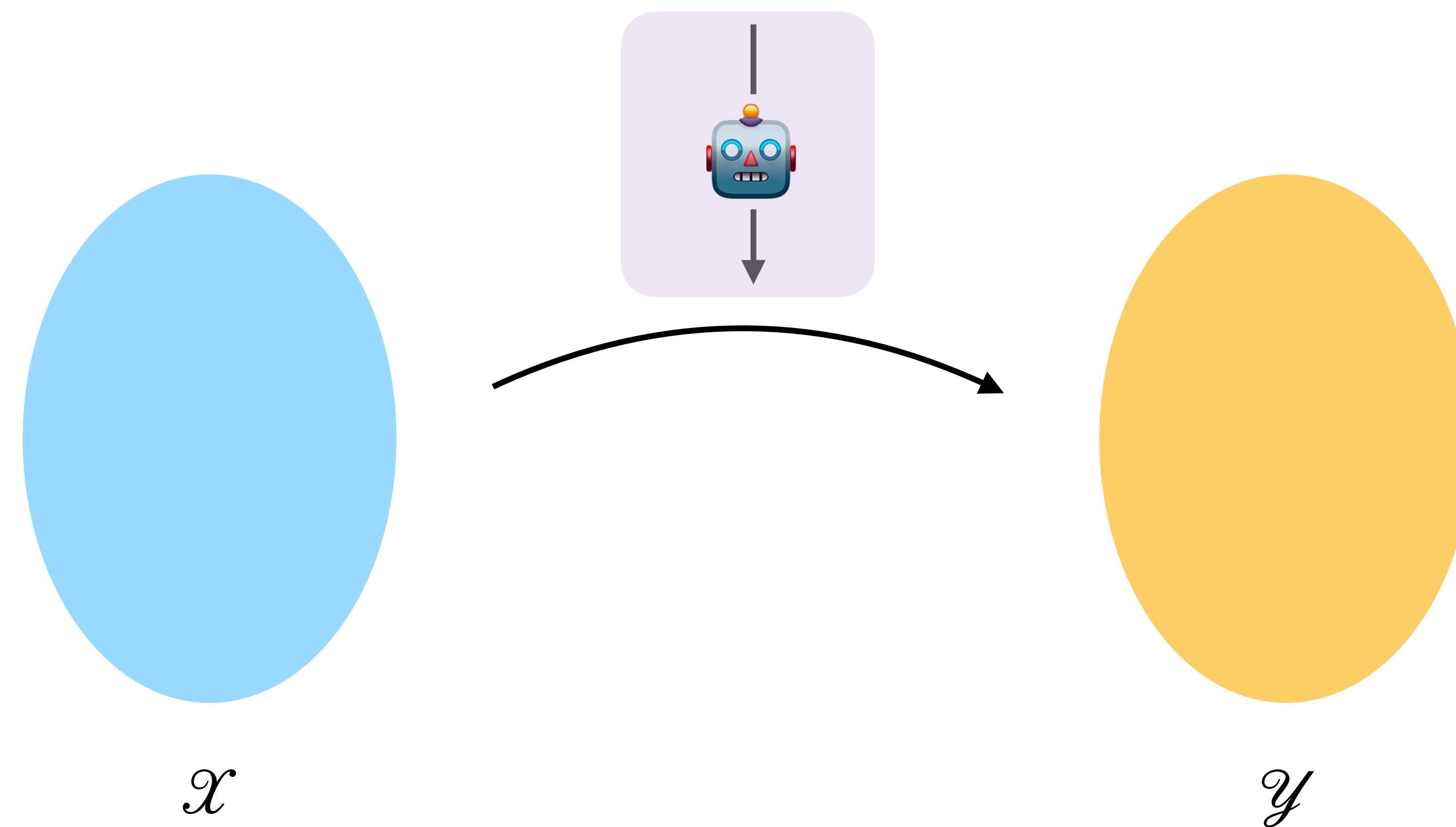
The study of *making predictions* from data.

Supervised Machine Learning

A Definition

$$D_n := \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})\}$$

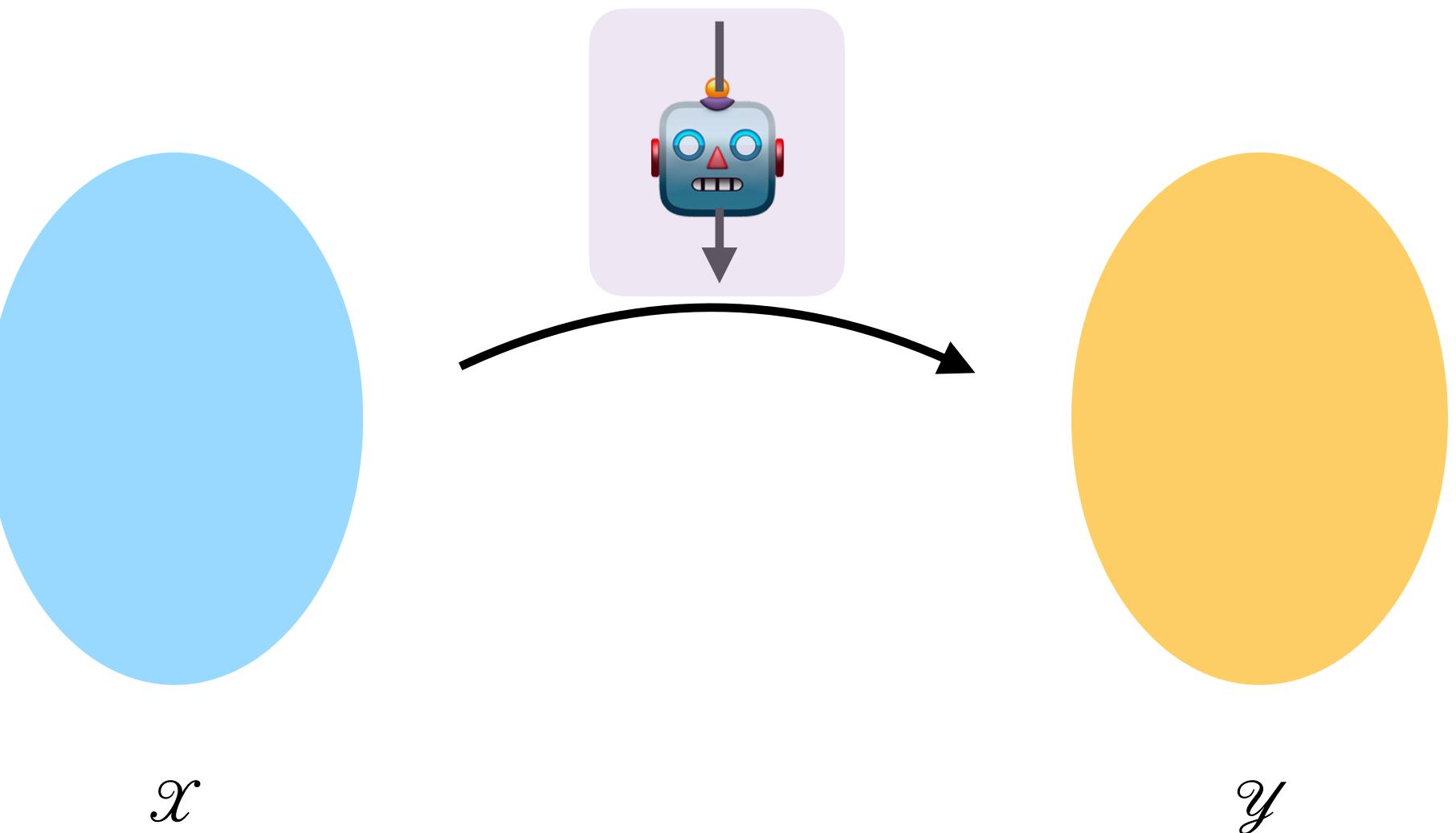
The study of *making predictions* from data.



Supervised Learning

Basic Pipeline

$$D_n := \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})\}$$

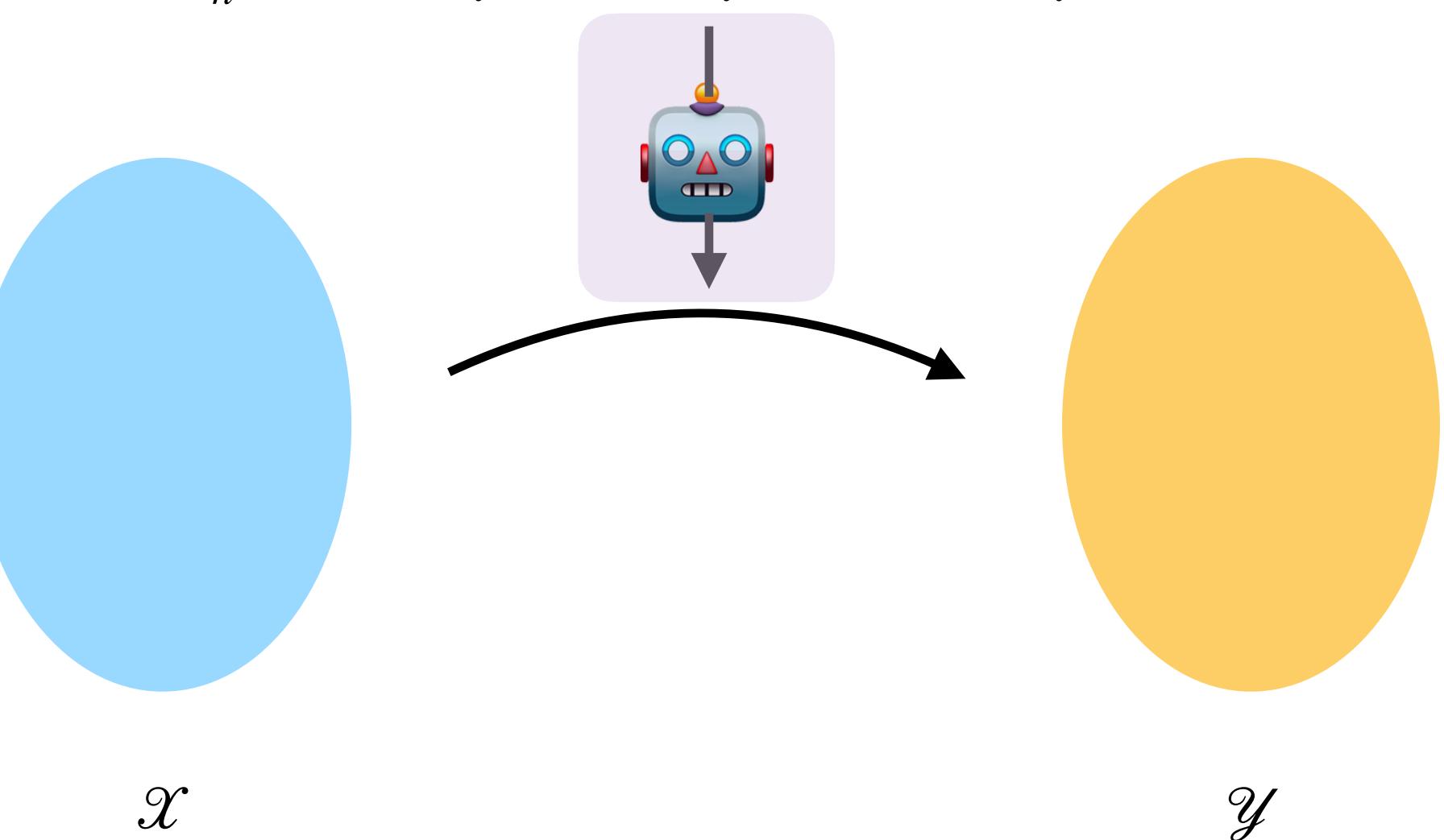


Supervised Learning

Basic Pipeline

1. Collect training dataset, a collection of labeled input-output pairs.

$$D_n := \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})\}$$



Supervised Learning

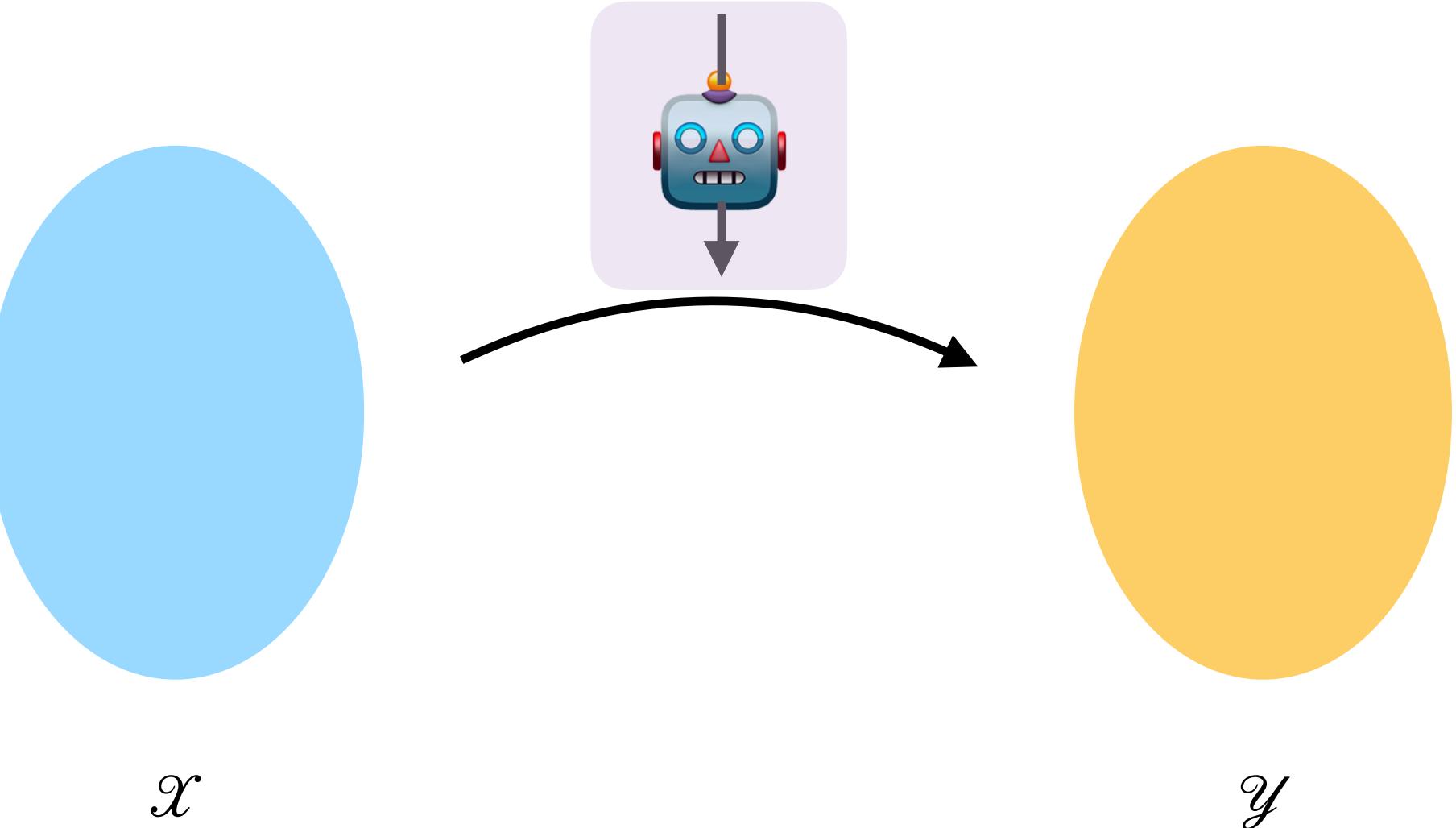
Basic Pipeline

1. Collect training dataset, a collection of labeled input-output pairs.

$$D_n := \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})\}$$

2. Decide on the template of the hypothesis mapping that will map inputs to actions.

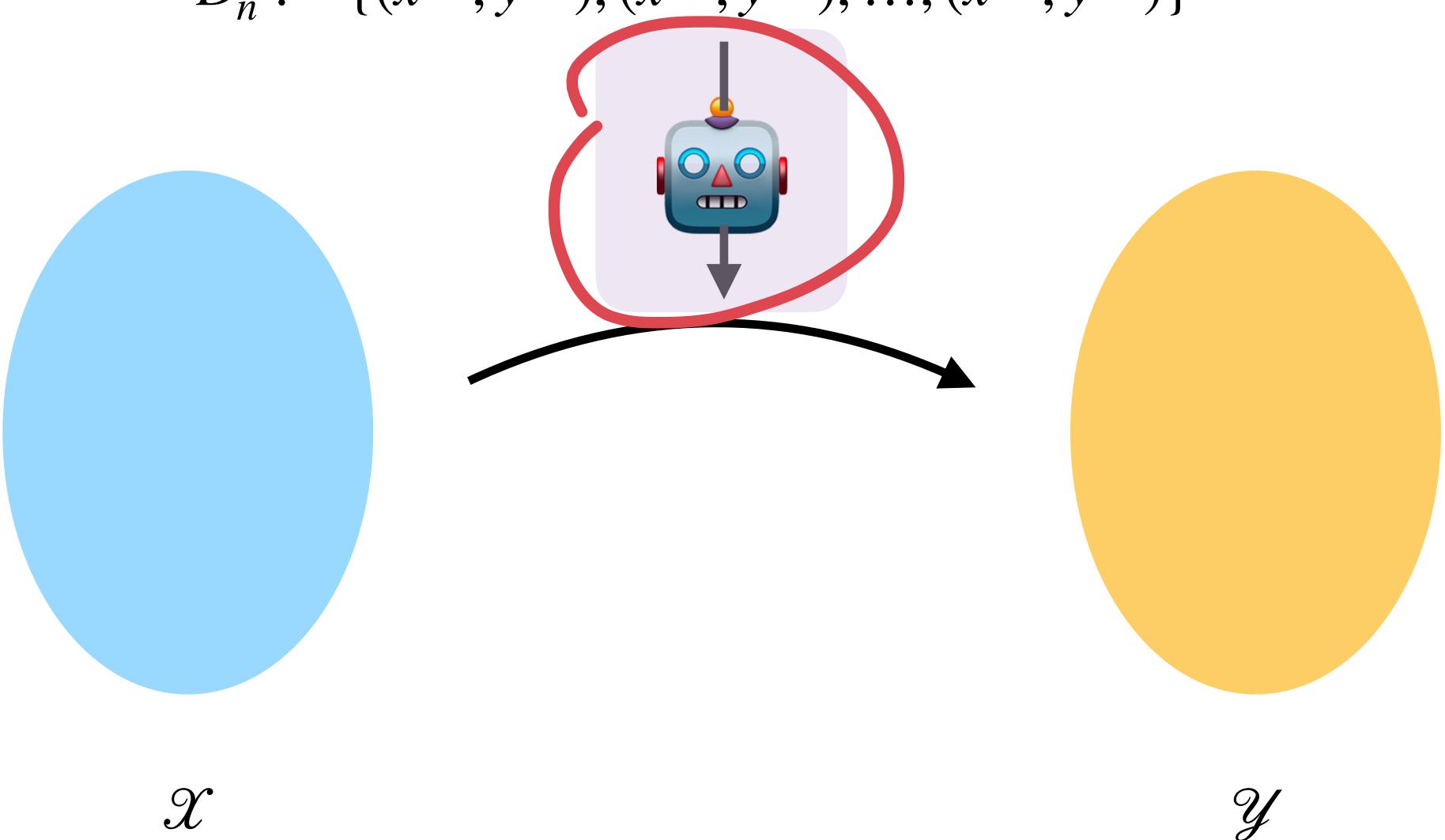
$$h: \mathcal{X} \rightarrow \mathcal{Y}.$$



Supervised Learning

Basic Pipeline

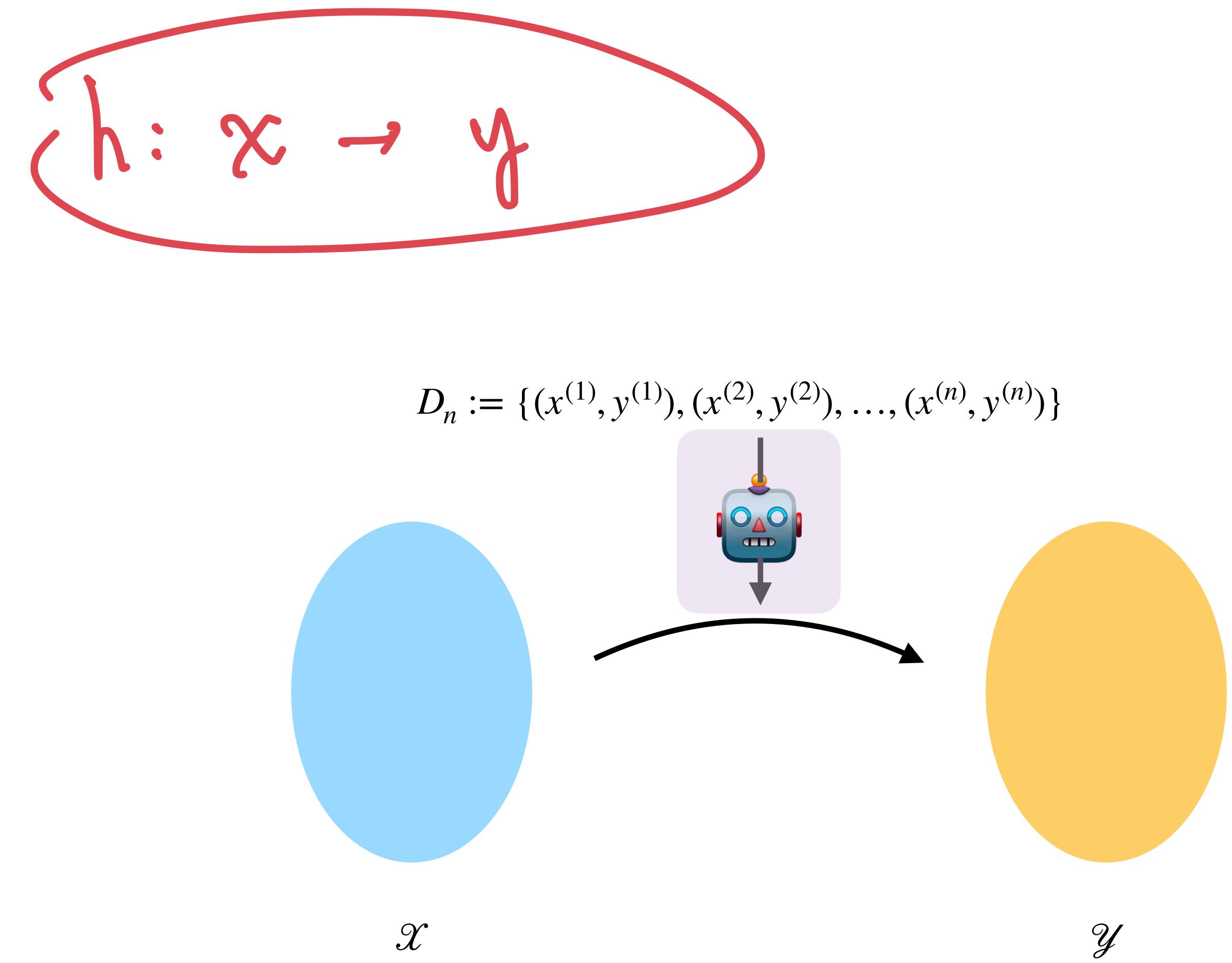
1. Collect training dataset, a collection of labeled input-output pairs.
$$D_n := \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})\}$$
2. Decide on the template of the hypothesis mapping that will map inputs to actions.
3. A learning algorithm takes the labeled training data as input and outputs a hypothesis.



Supervised Learning

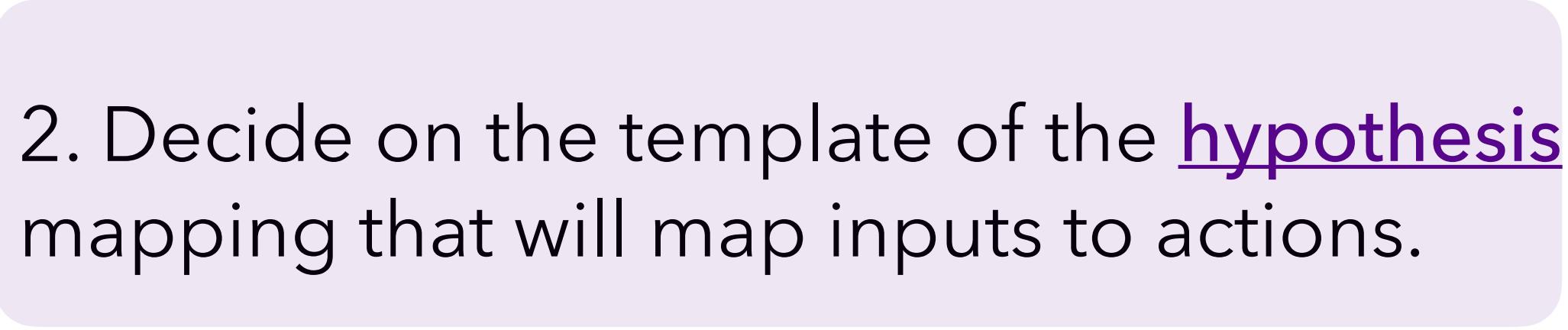
Basic Pipeline

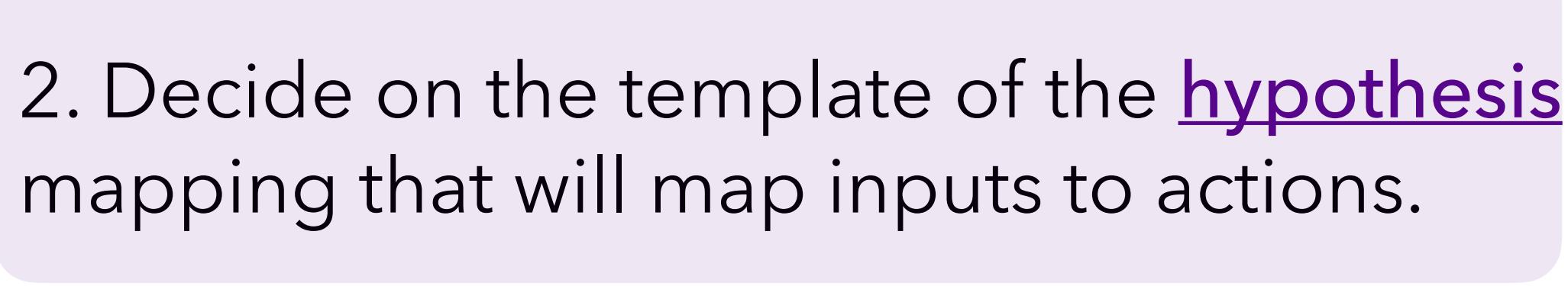
1. Collect training dataset, a collection of labeled input-output pairs.
$$D_n := \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})\}$$
2. Decide on the template of the hypothesis mapping that will map inputs to actions.
3. A learning algorithm takes the labeled training data as input and outputs a hypothesis.
4. The hypothesis predicts on new, unseen data which we hope it does well on, under a notion of loss.



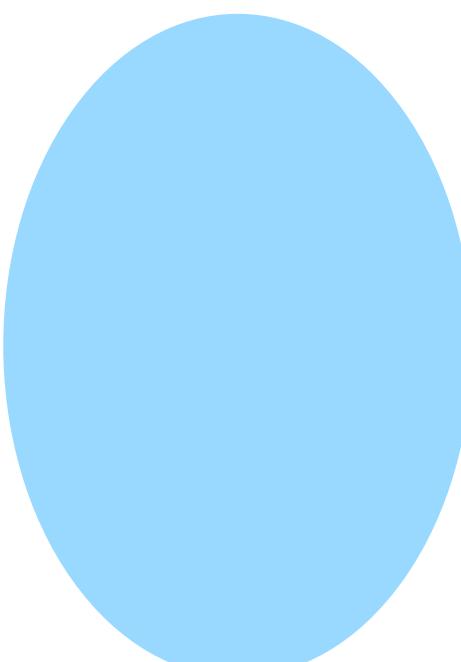
Supervised Learning

Basic Pipeline

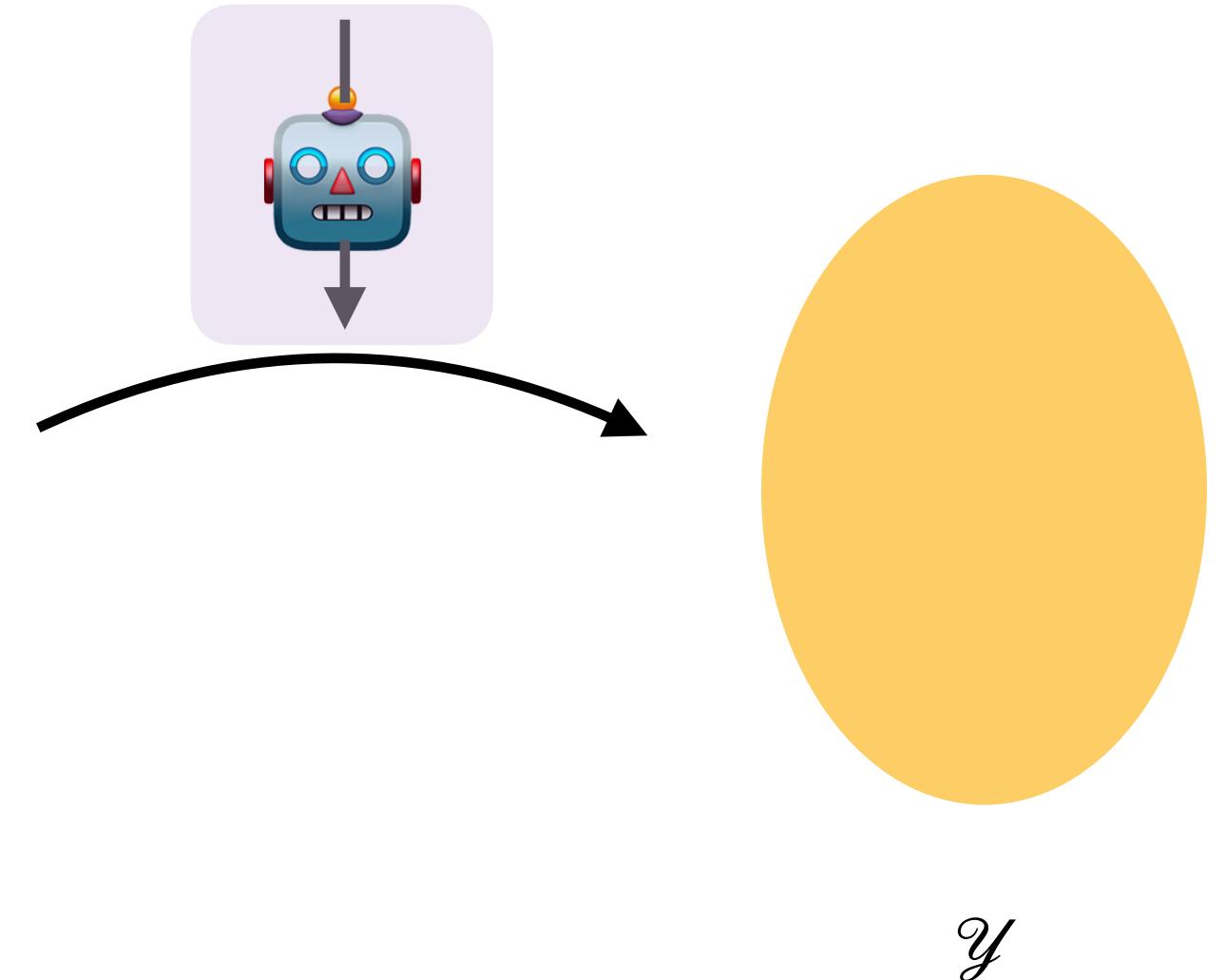
1. Collect training dataset, a collection of labeled input-output pairs.

2. Decide on the template of the hypothesis mapping that will map inputs to actions.

3. A learning algorithm takes the labeled training data as input and outputs a hypothesis.

4. The hypothesis predicts on new, unseen data which we hope it does well on, under a notion of loss.

Representation



\mathcal{X}



$$D_n := \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})\}$$

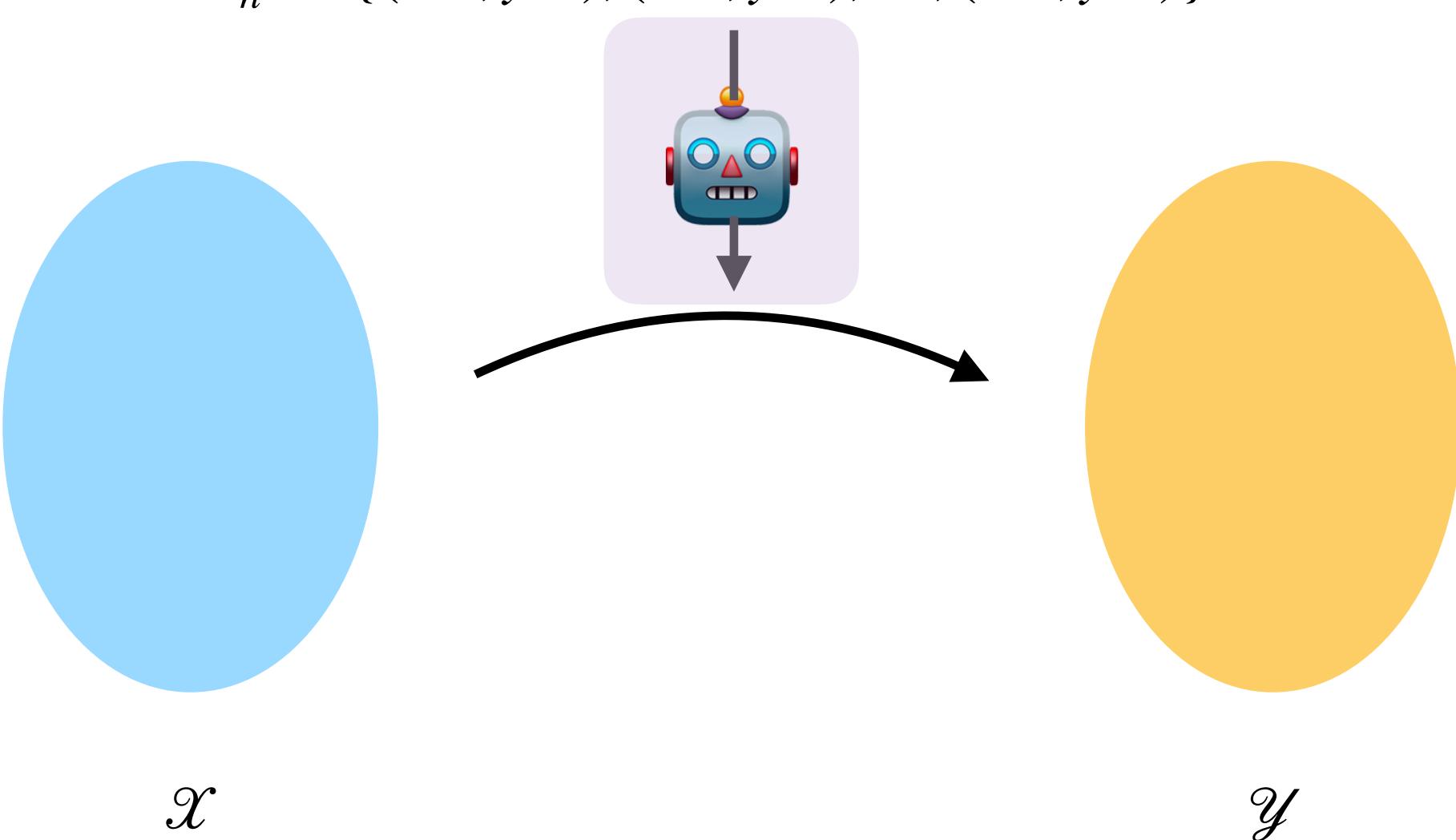
Supervised Learning

Basic Pipeline

1. Collect training dataset, a collection of labeled input-output pairs.
$$D_n := \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})\}$$
2. Decide on the template of the hypothesis mapping that will map inputs to actions.
3. A learning algorithm takes the labeled training data as input and outputs a hypothesis.
4. The hypothesis predicts on new, unseen data which we hope it does well on, under a notion of loss.

Representation

Optimization



Supervised Learning

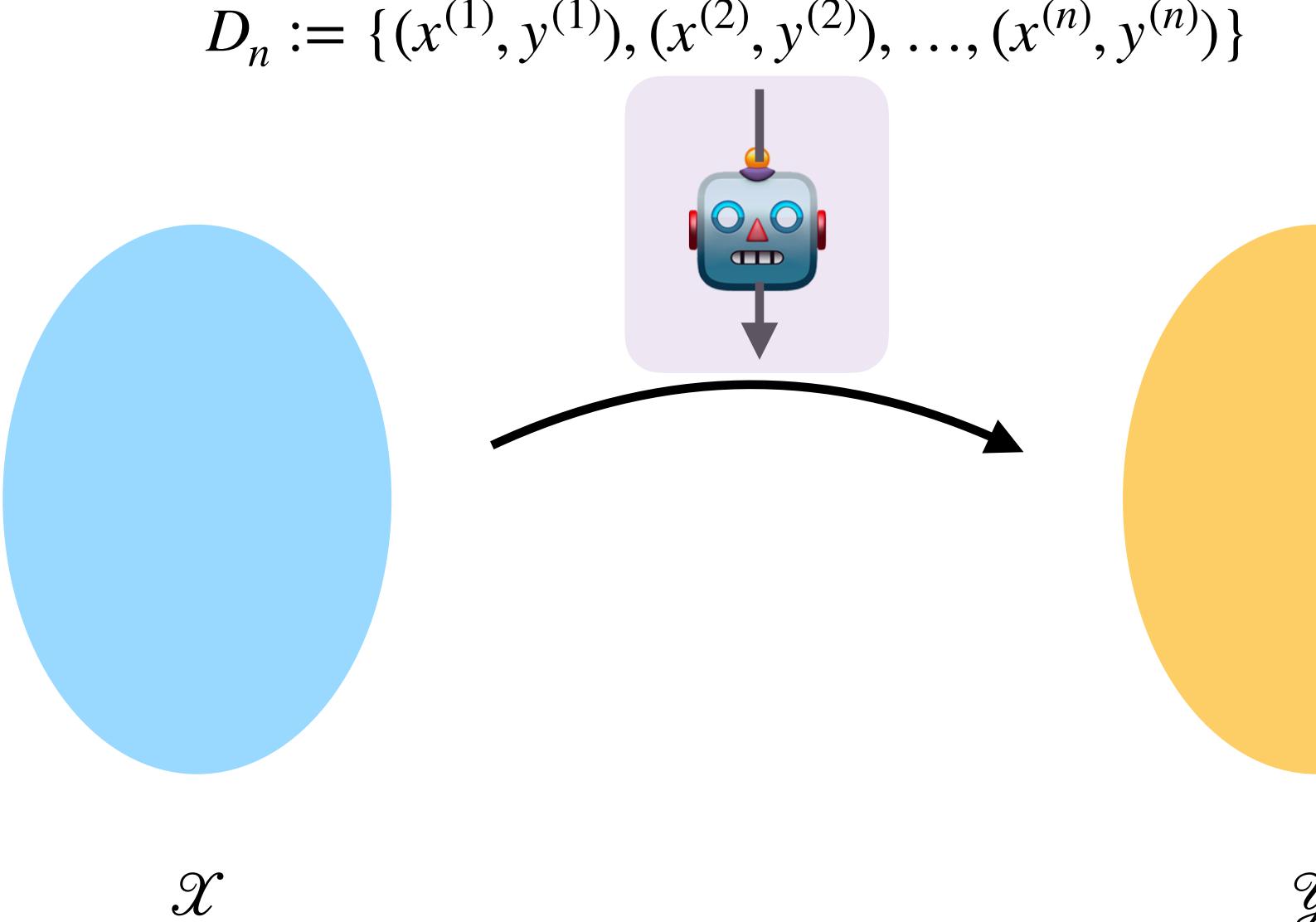
Basic Pipeline

1. Collect training dataset, a collection of labeled input-output pairs.
$$D_n := \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})\}$$
2. Decide on the template of the hypothesis mapping that will map inputs to actions.
3. A learning algorithm takes the labeled training data as input and outputs a hypothesis.
4. The hypothesis predicts on new, unseen data which we hope it does well on, under a notion of loss.

Representation

Optimization

Generalization



Outline

Course Overview and Logistics

Introduction to Machine Learning

Statistical Learning Setup

Statistical Learning: Bayes Risk

Statistical Learning: Empirical Risk and ERM

Statistical Learning: Hypothesis Class

Excess Risk Decomposition and Three Types of Error

Inputs, Outcomes, and Evaluation

The Basic Prediction Problem

Inputs, Outcomes, and Evaluation

The Basic Prediction Problem

The “template” of the problems we care about follow this structure:

Inputs, Outcomes, and Evaluation

The Basic Prediction Problem

The “template” of the problems we care about follow this structure:

1. Observe an input $x \in \mathcal{X}$.

Inputs, Outcomes, and Evaluation

The Basic Prediction Problem

The “template” of the problems we care about follow this structure:

1. Observe an input $x \in \mathcal{X}$.
2. Take an action $a \in \mathcal{A}$.

Inputs, Outcomes, and Evaluation

The Basic Prediction Problem

The “template” of the problems we care about follow this structure:

1. Observe an input $x \in \mathcal{X}$.
2. Take an action $a \in \mathcal{A}$.
3. Observe the true outcome $y \in \mathcal{Y}$.

Inputs, Outcomes, and Evaluation

The Basic Prediction Problem

The “template” of the problems we care about follow this structure:

1. Observe an input $x \in \mathcal{X}$.
2. Take an action $a \in \mathcal{A}$.
3. Observe the true outcome $y \in \mathcal{Y}$.
4. Evaluate the actions in relation to the outcome.

Inputs, Outcomes, and Evaluation

Input Space

Inputs, Outcomes, and Evaluation

Input Space

\mathcal{X} is the input space (aka feature space), where $x \in \mathcal{X}$ is an input.

Inputs, Outcomes, and Evaluation

Input Space

\mathcal{X} is the input space (aka feature space), where $x \in \mathcal{X}$ is an input.

In many cases, $\mathcal{X} = \mathbb{R}^d$, d -dimensional Euclidean space.

Inputs, Outcomes, and Evaluation

Input Space

\mathcal{X} is the input space (aka feature space), where $x \in \mathcal{X}$ is an input.

In many cases, $\mathcal{X} = \mathbb{R}^d$, d -dimensional Euclidean space.

Example: Measurements in an individual's medical exam (height, weight, BP, etc.)

Inputs, Outcomes, and Evaluation

Input Space

\mathcal{X} is the input space (aka feature space), where $x \in \mathcal{X}$ is an input.

In many cases, $\mathcal{X} = \mathbb{R}^d$, d -dimensional Euclidean space.

Example: Measurements in an individual's medical exam (height, weight, BP, etc.)

Example: Pixels in a 1,024x1,024 image.

Inputs, Outcomes, and Evaluation

Input Space

\mathcal{X} is the input space (aka feature space), where $x \in \mathcal{X}$ is an input.

In many cases, $\mathcal{X} = \mathbb{R}^d$, d -dimensional Euclidean space.

Example: Measurements in an individual's medical exam (height, weight, BP, etc.)

Example: Pixels in a 1,024x1,024 image.

Example: Words in a document of English text.

Inputs, Outcomes, and Evaluation

Input Space

\mathcal{X} is the input space (aka feature space), where $x \in \mathcal{X}$ is an input.

In many cases, $\mathcal{X} = \mathbb{R}^d$, d -dimensional Euclidean space.

Example: Measurements in an individual's medical exam (height, weight, BP, etc.)

Example: Pixels in a 1,024x1,024 image.

Example: Words in a document of English text.

The task of finding good features for a task is known as feature engineering.

Inputs, Outcomes, and Evaluation

Input Space

\mathcal{X} is the input space (aka feature space), where $x \in \mathcal{X}$ is an input.

In many cases, $\mathcal{X} = \mathbb{R}^d$, d -dimensional Euclidean space.

Example: Measurements in an individual's medical exam (height, weight, BP, etc.)

Example: Pixels in a 1,024x1,024 image.

Example: Words in a document of English text.

The task of finding good features for a task is known as feature engineering.

Neural networks (latter half of semester) can be seen as "automated feature engineers."

Inputs, Outcomes, and Evaluation

Outcome Space

Inputs, Outcomes, and Evaluation

Outcome Space

\mathcal{Y} is the outcome space (aka label space), where $y \in \mathcal{Y}$ is outcome/label.

Inputs, Outcomes, and Evaluation

Outcome Space

\mathcal{Y} is the outcome space (aka label space), where $y \in \mathcal{Y}$ is outcome/label.

In many cases, \mathcal{Y} can be encoded as a single number.

Inputs, Outcomes, and Evaluation

Outcome Space

\mathcal{Y} is the outcome space (aka label space), where $y \in \mathcal{Y}$ is outcome/label.

In many cases, \mathcal{Y} can be encoded as a single number.

Example: $\mathcal{Y} = \{-1, +1\}$ (e.g. yes/no, cat/dog, etc.) in binary classification.

Inputs, Outcomes, and Evaluation

Outcome Space

\mathcal{Y} is the outcome space (aka label space), where $y \in \mathcal{Y}$ is outcome/label.

In many cases, \mathcal{Y} can be encoded as a single number.

Example: $\mathcal{Y} = \{-1, +1\}$ (e.g. yes/no, cat/dog, etc.) in binary classification.

Example: $\mathcal{Y} = \{1, 2, \dots, k\}$ (e.g. English word, breed of cat, etc.) in multiclass classification.

Inputs, Outcomes, and Evaluation

Outcome Space

\mathcal{Y} is the outcome space (aka label space), where $y \in \mathcal{Y}$ is outcome/label.

In many cases, \mathcal{Y} can be encoded as a single number.

Example: $\mathcal{Y} = \{-1, +1\}$ (e.g. yes/no, cat/dog, etc.) in binary classification.

Example: $\mathcal{Y} = \{1, 2, \dots, k\}$ (e.g. English word, breed of cat, etc.) in multiclass classification.

Example: $\mathcal{Y} = \mathbb{R}$ (e.g. day's temperature, stock price, etc.) in regression.

Inputs, Outcomes, and Evaluation

Action Space

Inputs, Outcomes, and Evaluation

Action Space

\mathcal{A} is the action space, where $a \in \mathcal{A}$ is an action.

Inputs, Outcomes, and Evaluation

Action Space

\mathcal{A} is the action space, where $a \in \mathcal{A}$ is an action.

Generic term for what is produced by our system (in many cases, a prediction).

Inputs, Outcomes, and Evaluation

Action Space

\mathcal{A} is the action space, where $a \in \mathcal{A}$ is an action.

Generic term for what is produced by our system (in many cases, a prediction).

In many cases, we will set $\mathcal{A} = \mathcal{Y}$.

Inputs, Outcomes, and Evaluation

Action Space

\mathcal{A} is the action space, where $a \in \mathcal{A}$ is an action.

Generic term for what is produced by our system (in many cases, a prediction).

In many cases, we will set $\mathcal{A} = \mathcal{Y}$

Example: Produce a – 1/1 classification (binary classification).

Inputs, Outcomes, and Evaluation

Action Space

\mathcal{A} is the action space, where $a \in \mathcal{A}$ is an action.

Generic term for what is produced by our system (in many cases, a prediction).

In many cases, we will set $\mathcal{A} = \mathcal{Y}$.

Example: Produce a – 1/1 classification (binary classification).

Example: Reject hypothesis that $\theta = 0$ (classical statistics).

Inputs, Outcomes, and Evaluation

Action Space

\mathcal{A} is the action space, where $a \in \mathcal{A}$ is an action.

Generic term for what is produced by our system (in many cases, a prediction).

In many cases, we will set $\mathcal{A} = \mathcal{Y}$.

Example: Produce a – 1/1 classification (binary classification).

Example: Reject hypothesis that $\theta = 0$ (classical statistics).

Example: Prediction of storm location in 3 hours.

Inputs, Outcomes, and Evaluation

Action Space

\mathcal{A} is the action space, where $a \in \mathcal{A}$ is an action.

Generic term for what is produced by our system (in many cases, a prediction).

In many cases, we will set $\mathcal{A} = \mathcal{Y}$.

Example: Produce a – 1/1 classification (binary classification).

Example: Reject hypothesis that $\theta = 0$ (classical statistics).

Example: Prediction of storm location in 3 hours.

Example: Written English text (image captioning, speech recognition, translation).

Inputs, Outcomes, and Evaluation

Evaluation (Loss Functions)

Inputs, Outcomes, and Evaluation

Evaluation (Loss Functions)

A loss function $\ell : \mathcal{A} \times \mathcal{Y} \rightarrow \mathbb{R}$ measures the “badness” of action a with respect to $y \in \mathcal{Y}$.

Inputs, Outcomes, and Evaluation

Evaluation (Loss Functions)

A loss function $\ell : \mathcal{A} \times \mathcal{Y} \rightarrow \mathbb{R}$ measures the “badness” of action a with respect to $y \in \mathcal{Y}$.

$$(a, y) \mapsto \ell(a, y)$$

Inputs, Outcomes, and Evaluation

Evaluation (Loss Functions)

A loss function $\ell : \mathcal{A} \times \mathcal{Y} \rightarrow \mathbb{R}$ measures the “badness” of action a with respect to $y \in \mathcal{Y}$.

$$(a, y) \mapsto \ell(a, y)$$

By convention, smaller loss is better, and loss is usually non-negative.

Inputs, Outcomes, and Evaluation

Loss Function Examples

Inputs, Outcomes, and Evaluation

Loss Function Examples

Classification

Example. $\mathcal{Y} = \{-1, +1\}$ or $\mathcal{Y} = \{1, \dots, k\}$ and $\mathcal{A} = \mathcal{Y}$. A reasonable loss is zero-one loss.

Inputs, Outcomes, and Evaluation

Loss Function Examples

Example. $\mathcal{Y} = \{-1, +1\}$ or $\mathcal{Y} = \{1, \dots, k\}$ and $\mathcal{A} = \mathcal{Y}$. A reasonable loss is zero-one loss.

$$\ell(a, y) = \begin{cases} 1 & \text{if } a \neq y \\ 0 & \text{otherwise} \end{cases}$$

or, shorthand:

$$\ell(\hat{y}, y) := \mathbf{1}\{a \neq y\}$$

indicator function.

Inputs, Outcomes, and Evaluation

Loss Function Examples

Example. $\mathcal{Y} = \{-1, +1\}$ or $\mathcal{Y} = \{1, \dots, k\}$ and $\mathcal{A} = \mathcal{Y}$. A reasonable loss is zero-one loss.

$$\ell(a, y) = \begin{cases} 1 & \text{if } a \neq y \\ 0 & \text{otherwise} \end{cases} \quad \text{or, shorthand: } \ell(\hat{y}, y) := \mathbf{1}\{a \neq y\}$$

Inputs, Outcomes, and Evaluation

Loss Function Examples

Example. $\mathcal{Y} = \{-1, +1\}$ or $\mathcal{Y} = \{1, \dots, k\}$ and $\mathcal{A} = \mathcal{Y}$. A reasonable loss is zero-one loss.

$$\ell(a, y) = \begin{cases} 1 & \text{if } a \neq y \\ 0 & \text{otherwise} \end{cases} \quad \text{or, shorthand: } \ell(\hat{y}, y) := \mathbf{1}\{a \neq y\}$$

Example. $\mathcal{Y} = \mathbb{R}$ and $\mathcal{A} = \mathcal{Y}$. A reasonable loss is the squared loss.

Inputs, Outcomes, and Evaluation

Loss Function Examples

Example. $\mathcal{Y} = \{-1, +1\}$ or $\mathcal{Y} = \{1, \dots, k\}$ and $\mathcal{A} = \mathcal{Y}$. A reasonable loss is zero-one loss.

$$\ell(a, y) = \begin{cases} 1 & \text{if } a \neq y \\ 0 & \text{otherwise} \end{cases} \quad \text{or, shorthand: } \ell(\hat{y}, y) := \mathbf{1}\{a \neq y\}$$

Example. $\mathcal{Y} = \mathbb{R}$ and $\mathcal{A} = \mathcal{Y}$. A reasonable loss is the squared loss.

$$\ell(\hat{y}, y) = (a - \underline{y})^2.$$

Inputs, Outcomes, and Evaluation

The Basic Prediction Problem

Inputs, Outcomes, and Evaluation

The Basic Prediction Problem

The “template” of the problems we care about follow this structure:

Inputs, Outcomes, and Evaluation

The Basic Prediction Problem

The “template” of the problems we care about follow this structure:

1. Observe an input $x \in \mathcal{X}$.

Inputs, Outcomes, and Evaluation

The Basic Prediction Problem

The “template” of the problems we care about follow this structure:

1. Observe an input $x \in \mathcal{X}$.
2. Take an action $a \in \mathcal{A}$.

Inputs, Outcomes, and Evaluation

The Basic Prediction Problem

The “template” of the problems we care about follow this structure:

1. Observe an input $x \in \mathcal{X}$.
2. Take an action $a \in \mathcal{A}$.
3. Observe the true outcome $y \in \mathcal{Y}$.

Inputs, Outcomes, and Evaluation

The Basic Prediction Problem

The “template” of the problems we care about follow this structure:

1. Observe an input $x \in \mathcal{X}$.
2. Take an action $a \in \mathcal{A}$.
3. Observe the true outcome $y \in \mathcal{Y}$.
4. Evaluate the actions in relation to the outcome.

Inputs, Outcomes, and Evaluation

The Basic Prediction Problem

The “template” of the problems we care about follow this structure:

1. Observe an input $x \in \mathcal{X}$.
We will construct prediction functions to do this.
2. Take an action $a \in \mathcal{A}$.
3. Observe the true outcome $y \in \mathcal{Y}$.
4. Evaluate the actions in relation to the outcome.

Hypothesis

Definition & Goal

Hypothesis

Definition & Goal

classification.

A hypothesis (aka predictor/prediction function) is a function $h : \mathcal{X} \rightarrow \mathcal{A}$ that takes inputs/features x and maps to an action $h(x)$.

Hypothesis

Definition & Goal

A hypothesis (aka predictor/prediction function) is a function $h : \mathcal{X} \rightarrow \mathcal{A}$ that takes inputs/features x and maps to an action $h(x)$.

The loss of action a in context of y : $\ell(a, y)$

Hypothesis

Definition & Goal

A hypothesis (aka predictor/prediction function) is a function $h : \mathcal{X} \rightarrow \mathcal{A}$ that takes inputs/features x and maps to an action $h(x)$.

The loss of action a in context of y : $\ell(a, y)$

The loss of action $h(x)$ in context of y : $\ell(h(x), y)$

Hypothesis

Definition & Goal

A hypothesis (aka predictor/prediction function) is a function $h : \mathcal{X} \rightarrow \mathcal{A}$ that takes inputs/features x and maps to an action $h(x)$.

The loss of action a in context of y : $\ell(a, y)$

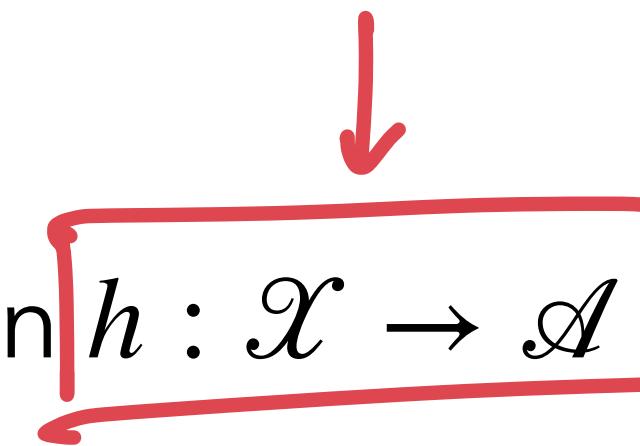
The loss of action $h(x)$ in context of y : $\ell(h(x), y)$

Goal. Turn our prediction problem into an *optimization problem*.

Hypothesis

Definition & Goal

A hypothesis (aka predictor/prediction function) is a function $h : \mathcal{X} \rightarrow \mathcal{A}$ that takes inputs/features x and maps to an action $h(x)$.



The loss of action a in context of y : $\ell(a, y)$

The loss of action $h(x)$ in context of y : $\ell(h(x), y)$ ← *evaluation on one point*.

Goal. Turn our prediction problem into an *optimization problem*.

Question: How do we evaluate a prediction function h as a *whole*?

Hypothesis

Definition & Goal

A hypothesis (aka predictor/prediction function) is a function $h : \mathcal{X} \rightarrow \mathcal{A}$ that takes inputs/features x and maps to an action $h(x)$.

The loss of action a in context of y : $\ell(a, y)$

The loss of action $h(x)$ in context of y : $\ell(h(x), y)$

Goal. Turn our prediction problem into an *optimization problem*.

Question: How do we evaluate a prediction function h as a whole?

Data Generating Distribution

Definition & Goal

Data Generating Distribution

Definition & Goal

$\ell(h(x), y)$ is the quality of h for a single (x, y) .

Data Generating Distribution

Definition & Goal

$\ell(h(x), y)$ is the quality of h for a single (x, y) .

But how can we evaluate h over *all* of $\mathcal{X} \times \mathcal{Y}$?

Data Generating Distribution

Definition & Goal

$\ell(h(x), y)$ is the quality of h for a single (x, y) .

But how can we evaluate h over all of $\mathcal{X} \times \mathcal{Y}$?

We will assume that there exists a data-generating distribution $P_{\mathcal{X} \times \mathcal{Y}}$ over $\mathcal{X} \times \mathcal{Y}$.

Data Generating Distribution

Definition & Goal

$\ell(h(x), y)$ is the quality of h for a single (x, y) .

But how can we evaluate h over all of $\mathcal{X} \times \mathcal{Y}$?

We will assume that there exists a data-generating distribution $P_{\mathcal{X} \times \mathcal{Y}}$ over $\mathcal{X} \times \mathcal{Y}$.

Any input/output pair (x, y) is assumed generated i.i.d. (independent and identically distributed) from $P_{\mathcal{X} \times \mathcal{Y}}$ (this is the i.i.d. assumption).

Data Generating Distribution

Definition & Goal

$\ell(h(x), y)$ is the quality of h for a single (x, y) .

But how can we evaluate h over all of $\mathcal{X} \times \mathcal{Y}$?

We will assume that there exists a data-generating distribution $P_{\mathcal{X} \times \mathcal{Y}}$ over $\mathcal{X} \times \mathcal{Y}$.

Any input/output pair (x, y) is assumed generated i.i.d. (independent and identically distributed) from $P_{\mathcal{X} \times \mathcal{Y}}$ (this is the i.i.d. assumption). → save distribution.

In machine learning, $P_{\mathcal{X} \times \mathcal{Y}}$ is assumed to be unknown!

Data Generating Distribution

Definition & Goal

$\ell(h(x), y)$ is the quality of h for a single (x, y) .

But how can we evaluate h over all of $\mathcal{X} \times \mathcal{Y}$?

We will assume that there exists a data-generating distribution $P_{\mathcal{X} \times \mathcal{Y}}$ over $\mathcal{X} \times \mathcal{Y}$.

Any input/output pair (x, y) is assumed generated i.i.d. (independent and identically distributed) from $P_{\mathcal{X} \times \mathcal{Y}}$ (this is the i.i.d. assumption).

In machine learning, $P_{\mathcal{X} \times \mathcal{Y}}$ is assumed to be unknown!

Data Generating Distribution

Considering what is random

Data Generating Distribution

Considering what is random

and consider: *What is random in this problem?*

Data Generating Distribution

Considering what is random

and consider: *What is random in this problem?*

Input/output pairs (x, y) are random variables from joint distribution $P_{\mathcal{X} \times \mathcal{Y}}$.

Data Generating Distribution

Considering what is random

and consider: *What is random in this problem?*

Input/output pairs (x, y) are random variables from joint distribution $P_{\mathcal{X} \times \mathcal{Y}}$.

Joint Dist.

The inputs x are random variables from marginal distribution $P_{\mathcal{X}}$.

Data Generating Distribution

Considering what is random

$$p(A, B) = p(A|B) p(B)$$

and consider: *What is random in this problem?*

Input/output pairs (x, y) are random variables from joint distribution $P_{\mathcal{X} \times \mathcal{Y}}$.

The inputs x are random variables from marginal distribution $P_{\mathcal{X}}$.

For any given x , the y are random variables from the conditional distribution $P_{\mathcal{Y}|x}$.

Data Generating Distribution

Considering what is random

X is a random variable

$\rightarrow F(x)$ is a random variable

and consider: *What is random in this problem?*

Input/output pairs (x, y) are random variables from joint distribution $P_{\mathcal{X} \times \mathcal{Y}}$.

The inputs x are random variables from marginal distribution $P_{\mathcal{X}}$.

For any given x , the y are random variables from the conditional distribution $P_{\mathcal{Y}|x}$.

For a fixed hypothesis h , the loss $\ell(h(x), y)$ is a random variable

Function

$\ell(h(x), y)$
Function

Evaluation, Overall

Definition of Risk

Evaluation, Overall

Definition of Risk



Evaluation, Overall

Definition of Risk

$\ell(h(x), y)$ is the quality of h for a single (x, y) .

Evaluation, Overall

Definition of Risk

$\ell(h(x), y)$ is the quality of h for a single (x, y) .

But how can we evaluate h over all of $\mathcal{X} \times \mathcal{Y}$?

Evaluation, Overall

Definition of Risk

$\ell(h(x), y)$ is the quality of h for a single (x, y) .

But how can we evaluate h over all of $\mathcal{X} \times \mathcal{Y}$?

The risk of a hypothesis $h : \mathcal{X} \rightarrow \mathcal{A}$ is the expected loss of h over $P_{\mathcal{X} \times \mathcal{Y}}$:

Evaluation, Overall

Definition of Risk

$\ell(h(x), y)$ is the quality of h for a single (x, y) .

But how can we evaluate h over all of $\mathcal{X} \times \mathcal{Y}$?

The risk of a hypothesis $h : \mathcal{X} \rightarrow \mathcal{A}$ is the expected loss of h over $P_{\mathcal{X} \times \mathcal{Y}}$:

$$\underline{R}(h) := \mathbb{E}_{(x,y) \sim P_{\mathcal{X} \times \mathcal{Y}}} [\ell(h(x), y)]$$

$$R : \mathcal{A}^{\mathcal{X}} \rightarrow \mathbb{R}$$

all functions $\mathcal{X} \rightarrow \mathcal{A}$

Evaluation, Overall

Definition of Risk

$\ell(h(x), y)$ is the quality of h for a single (x, y) .

But how can we evaluate h over all of $\mathcal{X} \times \mathcal{Y}$?

The risk of a hypothesis $h : \mathcal{X} \rightarrow \mathcal{A}$ is the expected loss of h over $P_{\mathcal{X} \times \mathcal{Y}}$:

$$R(h) := \mathbb{E}_{(x,y) \sim P_{\mathcal{X} \times \mathcal{Y}}} [\ell(h(x), y)]$$

Evaluation, Overall

Definition of Risk

$\ell(h(x), y)$ is the quality of h for a single (x, y) .

But how can we evaluate h over all of $\mathcal{X} \times \mathcal{Y}$?

The **risk** of a hypothesis $h : \mathcal{X} \rightarrow \mathcal{A}$ is the expected loss of h over $P_{\mathcal{X} \times \mathcal{Y}}$:

$$R(h) := \mathbb{E}_{(x,y) \sim P_{\mathcal{X} \times \mathcal{Y}}} [\ell(h(x), y)]$$

Our ultimate goal will typically be to minimize this quantity!

Statistical Learning Setup

Summary of Characters So Far

Statistical Learning Setup

Summary of Characters So Far

1. Observe an input $x \in \mathcal{X}$.

Statistical Learning Setup

Summary of Characters So Far

1. Observe an input $x \in \mathcal{X}$.
2. Predict an action $a \in \mathcal{A}$.

Statistical Learning Setup

Summary of Characters So Far

1. Observe an input $x \in \mathcal{X}$.
2. Predict an action $a \in \mathcal{A}$.
3. Observe the true
outcome $y \in \mathcal{Y}$.

Statistical Learning Setup

Summary of Characters So Far

1. Observe an input $x \in \mathcal{X}$.
2. Predict an action $a \in \mathcal{A}$.
3. Observe the true outcome $y \in \mathcal{Y}$.
4. Evaluate the actions in relation to the outcome.

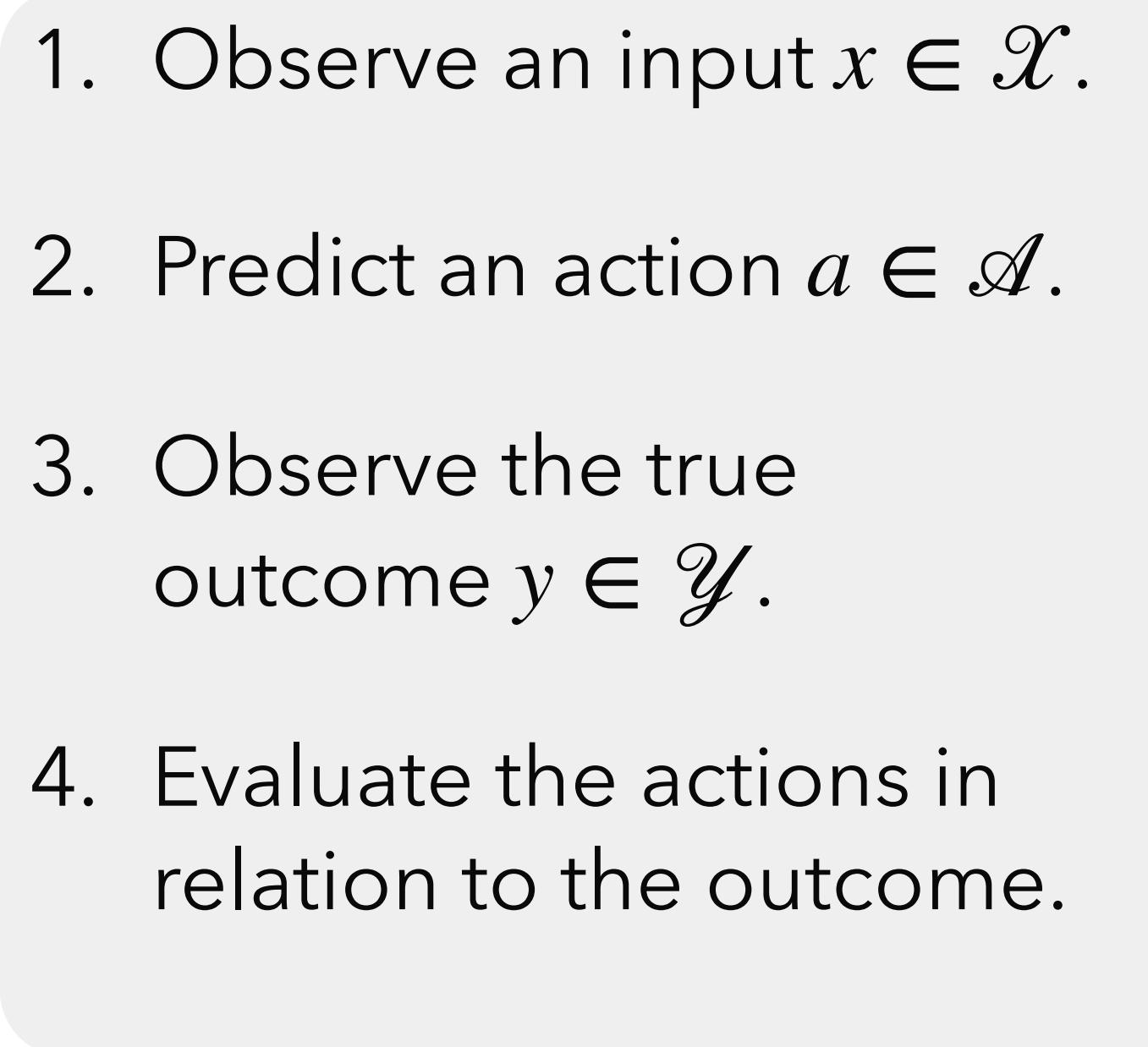
Statistical Learning Setup

Summary of Characters So Far

1. Observe an input $x \in \mathcal{X}$.
2. Predict an action $a \in \mathcal{A}$.
3. Observe the true outcome $y \in \mathcal{Y}$.
4. Evaluate the actions in relation to the outcome.

Statistical Learning Setup

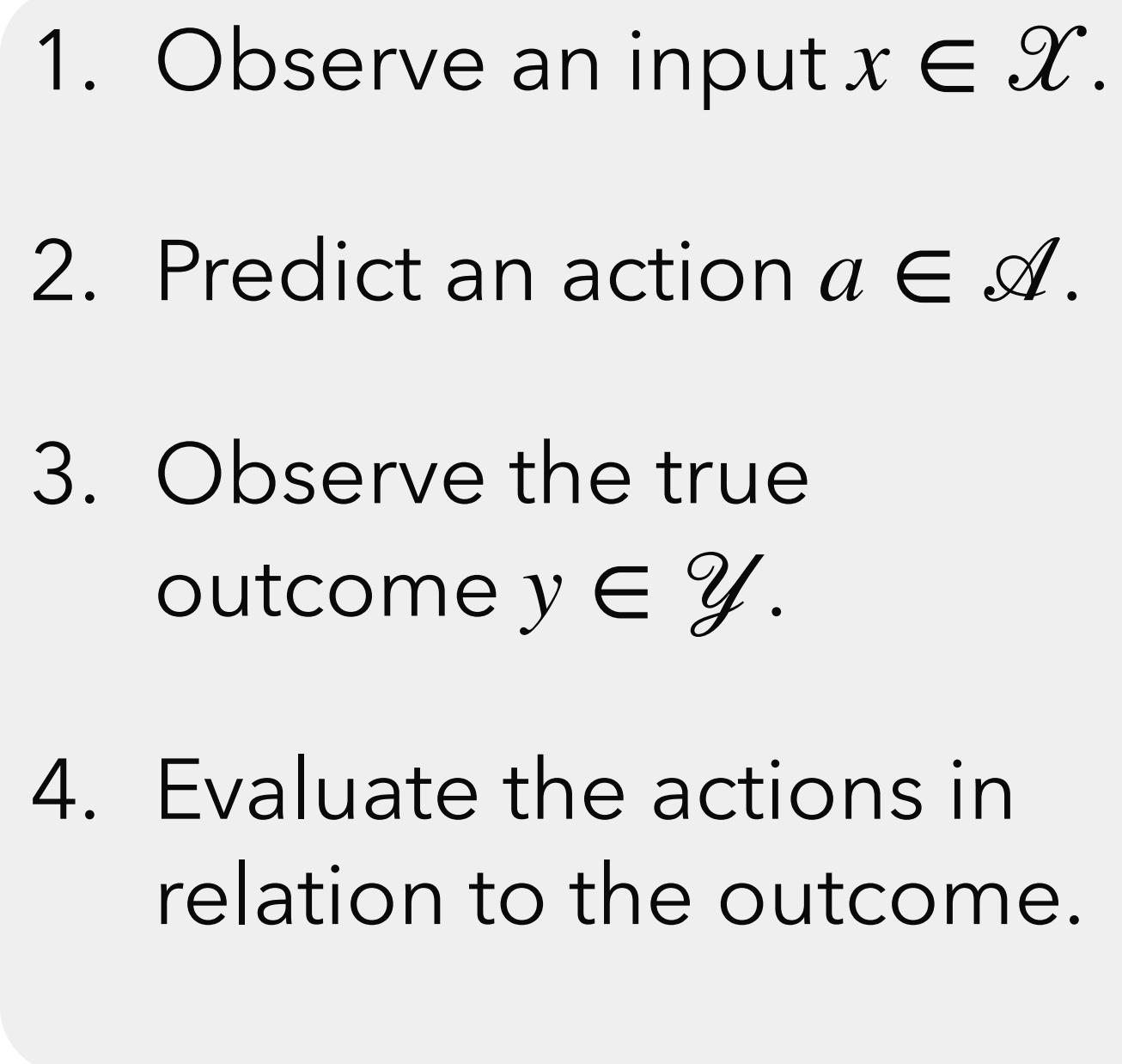
Summary of Characters So Far

1. Observe an input $x \in \mathcal{X}$.


\mathcal{X} is the **input space** (e.g. \mathbb{R}^d , pixels, words).
2. Predict an action $a \in \mathcal{A}$.
3. Observe the true outcome $y \in \mathcal{Y}$.
4. Evaluate the actions in relation to the outcome.

Statistical Learning Setup

Summary of Characters So Far

1. Observe an input $x \in \mathcal{X}$.


\mathcal{X} is the input space (e.g. \mathbb{R}^d , pixels, words).
2. Predict an action $a \in \mathcal{A}$.

\mathcal{Y} is the output space (e.g. $\{0,1\}$ or \mathbb{R}).
3. Observe the true outcome $y \in \mathcal{Y}$.
4. Evaluate the actions in relation to the outcome.

Statistical Learning Setup

Summary of Characters So Far

1. Observe an input $x \in \mathcal{X}$.
 \mathcal{X} is the input space (e.g. \mathbb{R}^d , pixels, words).
2. Predict an action $a \in \mathcal{A}$.
 \mathcal{Y} is the output space (e.g. $\{0,1\}$ or \mathbb{R}).
3. Observe the true outcome $y \in \mathcal{Y}$.
 \mathcal{A} is the action space (e.g. prediction of y , some decision).
4. Evaluate the actions in relation to the outcome.

Statistical Learning Setup

Summary of Characters So Far

1. Observe an input $x \in \mathcal{X}$.
2. Predict an action $a \in \mathcal{A}$.
3. Observe the true outcome $y \in \mathcal{Y}$.
4. Evaluate the actions in relation to the outcome.

\mathcal{X} is the input space (e.g. \mathbb{R}^d , pixels, words).

\mathcal{Y} is the output space (e.g. $\{0,1\}$ or \mathbb{R}).

\mathcal{A} is the action space (e.g. prediction of y , some decision).

$h : \mathcal{X} \rightarrow \mathcal{A}$ is a hypothesis to generate action $h(x)$.

Statistical Learning Setup

Summary of Characters So Far

1. Observe an input $x \in \mathcal{X}$.
2. Predict an action $a \in \mathcal{A}$.
3. Observe the true outcome $y \in \mathcal{Y}$.
4. Evaluate the actions in relation to the outcome.

\mathcal{X} is the input space (e.g. \mathbb{R}^d , pixels, words).

\mathcal{Y} is the output space (e.g. $\{0,1\}$ or \mathbb{R}).

\mathcal{A} is the action space (e.g. prediction of y , some decision).

$h : \mathcal{X} \rightarrow \mathcal{A}$ is a hypothesis to generate action $h(x)$.

Evaluate h with loss function $\ell : \mathcal{A} \times \mathcal{Y} \rightarrow \mathbb{R}$.

Statistical Learning Setup

Summary of Characters So Far

1. Observe an input $x \in \mathcal{X}$.
2. Predict an action $a \in \mathcal{A}$.
3. Observe the true outcome $y \in \mathcal{Y}$.
4. Evaluate the actions in relation to the outcome.

\mathcal{X} is the input space (e.g. \mathbb{R}^d , pixels, words).

\mathcal{Y} is the output space (e.g. $\{0,1\}$ or \mathbb{R}).

\mathcal{A} is the action space (e.g. prediction of y , some decision).

$h : \mathcal{X} \rightarrow \mathcal{A}$ is a hypothesis to generate action $h(x)$.

Evaluate h with loss function $\ell : \mathcal{A} \times \mathcal{Y} \rightarrow \mathbb{R}$.

$\ell(h(x), y)$ evaluates h on (x, y) .

random variable.
((x, y) is random)

Statistical Learning Setup

Summary of Characters So Far

1. Observe an input $x \in \mathcal{X}$.
2. Predict an action $a \in \mathcal{A}$.
3. Observe the true outcome $y \in \mathcal{Y}$.
4. Evaluate the actions in relation to the outcome.

\mathcal{X} is the input space (e.g. \mathbb{R}^d , pixels, words).

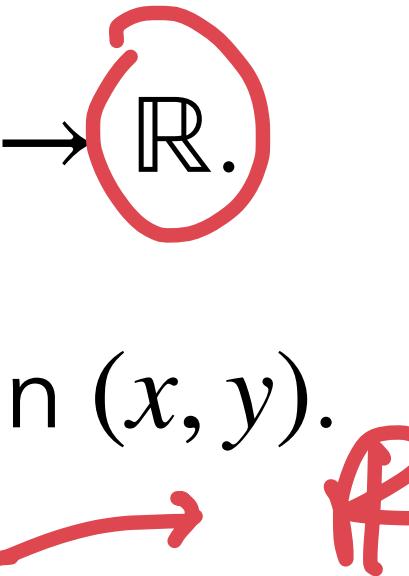
\mathcal{Y} is the output space (e.g. $\{0,1\}$ or \mathbb{R}).

\mathcal{A} is the action space (e.g. prediction of y , some decision).

$h : \mathcal{X} \rightarrow \mathcal{A}$ is a hypothesis to generate action $h(x)$.

Evaluate h with loss function $\ell : \mathcal{A} \times \mathcal{Y} \rightarrow \mathbb{R}$.

$\ell(h(x), y)$ evaluates h on (x, y) .

 R

$R(h) = \mathbb{E}_{(x,y) \sim P_{\mathcal{X} \times \mathcal{Y}}} [\ell(h(x), y)]$ is risk of h .

Statistical Learning Setup

Summary of Characters So Far

1. Observe an input $x \in \mathcal{X}$.
2. Predict an action $a \in \mathcal{A}$.
3. Observe the true outcome $y \in \mathcal{Y}$.
4. Evaluate the actions in relation to the outcome.

\mathcal{X} is the input space (e.g. \mathbb{R}^d , pixels, words).

\mathcal{Y} is the output space (e.g. $\{0,1\}$ or \mathbb{R}).

\mathcal{A} is the action space (e.g. prediction of y , some decision).

$h : \mathcal{X} \rightarrow \mathcal{A}$ is a hypothesis to generate action $h(x)$.

Evaluate h with loss function $\ell : \mathcal{A} \times \mathcal{Y} \rightarrow \mathbb{R}$.

$\ell(h(x), y)$ evaluates h on (x, y) .

$R(h) = \mathbb{E}_{(x,y) \sim P_{\mathcal{X} \times \mathcal{Y}}}[\ell(h(x), y)]$ is risk of h .

Outline

Course Overview and Logistics

Introduction to Machine Learning

Statistical Learning Setup

Statistical Learning: Bayes Risk

Statistical Learning: Empirical Risk and ERM

Statistical Learning: Hypothesis Class

Excess Risk Decomposition and Three Types of Error

Minimizing Risk

What's the smallest possible risk?

$$R(h) := \mathbb{E}_{(x,y) \sim P_{\mathcal{X} \times \mathcal{Y}}} [\ell(h(x), y)]$$

unknown

Our ultimate goal will typically be to minimize this quantity!

$$\mathbb{E}[\ell(h(x), y)] = \sum_{x,y} \ell(h(x), y) \Pr(x, y)$$
$$\mathbb{E}[\ell(h(x), y)] = \sum_{x,y} \ell(h(x), y) \Pr(x, y)$$

Bayes Risk

Definition

Bayes Risk

Definition

The Bayes hypothesis $h^* : \mathcal{X} \rightarrow \mathcal{A}$ is a function that achieves the *minimal risk* among all possible functions

Bayes Risk

Definition

$$\mathcal{X} \rightarrow \mathcal{A}$$

The Bayes hypothesis $h^* : \mathcal{X} \rightarrow \mathcal{A}$ is a function that achieves the *minimal risk* among all possible functions

$$h^* \in \arg \min_h R(h)$$

Bayes Risk

Definition

The Bayes hypothesis $h^* : \mathcal{X} \rightarrow \mathcal{A}$ is a function that achieves the *minimal risk* among all possible functions

$$h^* \in \arg \min_h R(h)$$

where the minimum is taken over all possible functions from \mathcal{X} to \mathcal{A} .

Bayes Risk

Definition

The Bayes hypothesis $h^* : \mathcal{X} \rightarrow \mathcal{A}$ is a function that achieves the *minimal risk* among all possible functions

$$h^* \in \arg \min_h R(h)$$

where the minimum is taken over all possible functions from \mathcal{X} to \mathcal{A} .

The risk of h^* is called the Bayes risk. \rightarrow $R(h^*)$

Bayes Risk

Example: Binary Classification

Bayes Risk

Example: Binary Classification

Binary classification: $\mathcal{Y} = \{0,1\}$ and $\mathcal{A} = \{0,1\}$.

Bayes Risk

Example: Binary Classification

Binary classification: $\mathcal{Y} = \{0,1\}$ and $\mathcal{A} = \{0,1\}$.

Zero-one loss: $\ell(\hat{y}, y) = \mathbf{1}\{\hat{y} \neq y\} := \begin{cases} 1 & \hat{y} \neq y \\ 0 & \text{otherwise} \end{cases}$ (when $\mathcal{A} = \mathcal{Y}$, use $\hat{y} \in \mathcal{A}$ as shorthand)

Bayes Risk

Example: Binary Classification

Binary classification: $\mathcal{Y} = \{0,1\}$ and $\mathcal{A} = \{0,1\}$.

Zero-one loss: $\ell(\hat{y}, y) = \mathbf{1}\{\hat{y} \neq y\} := \begin{cases} 1 & \hat{y} \neq y \\ 0 & \text{otherwise} \end{cases}$ (when $\mathcal{A} = \mathcal{Y}$, use $\hat{y} \in \mathcal{A}$ as shorthand)

$$\begin{aligned} R(h) &= \mathbb{E}[\mathbf{1}\{\hat{y} \neq y\}] = 1 \cdot \Pr(h(x) \neq y) + 0 \cdot \Pr(h(x) = y) \\ &\stackrel{=}{=} \mathbb{E}[\mathbf{1}\{h(x) \neq y\}] \end{aligned}$$

Bayes Risk

Example: Binary Classification

Binary classification: $\mathcal{Y} = \{0,1\}$ and $\mathcal{A} = \{0,1\}$.

Zero-one loss: $\ell(\hat{y}, y) = \mathbf{1}\{\hat{y} \neq y\} := \begin{cases} 1 & \hat{y} \neq y \\ 0 & \text{otherwise} \end{cases}$ (when $\mathcal{A} = \mathcal{Y}$, use $\hat{y} \in \mathcal{A}$ as shorthand)

$$R(h) = \mathbb{E}[\mathbf{1}\{\hat{y} \neq y\}] = 1 \cdot \Pr(h(x) \neq y) + 0 \cdot \Pr(h(x) = y)$$

$$\implies R(h) = \underline{\Pr(h(x) \neq y)}.$$

Bayes Risk

Example: Binary Classification

Binary classification: $\mathcal{Y} = \{0,1\}$ and $\mathcal{A} = \{0,1\}$.

Zero-one loss: $\ell(\hat{y}, y) = \mathbf{1}\{\hat{y} \neq y\} := \begin{cases} 1 & \hat{y} \neq y \\ 0 & \text{otherwise} \end{cases}$ (when $\mathcal{A} = \mathcal{Y}$, use $\hat{y} \in \mathcal{A}$ as shorthand)

$$\begin{aligned} R(h) &= \mathbb{E}[\mathbf{1}\{\hat{y} \neq y\}] = 1 \cdot \Pr(h(x) \neq y) + 0 \cdot \Pr(h(x) = y) \\ &\implies R(h) = \Pr(h(x) \neq y). \end{aligned}$$

Therefore, the Bayes hypothesis returns the most likely label:

Bayes Risk

Example: Binary Classification

Binary classification: $\mathcal{Y} = \{0,1\}$ and $\mathcal{A} = \{0,1\}$.

Zero-one loss: $\ell(\hat{y}, y) = \mathbf{1}\{\hat{y} \neq y\} := \begin{cases} 1 & \hat{y} \neq y \\ 0 & \text{otherwise} \end{cases}$ (when $\mathcal{A} = \mathcal{Y}$, use $\hat{y} \in \mathcal{A}$ as shorthand)

$$\begin{aligned} R(h) &= \mathbb{E}[\mathbf{1}\{\hat{y} \neq y\}] = 1 \cdot \Pr(h(x) \neq y) + 0 \cdot \Pr(h(x) = y) \\ &\implies R(h) = \Pr(h(x) \neq y). \end{aligned}$$

Therefore, the Bayes hypothesis returns the most likely label:

$$h^*(x) = \begin{cases} 1 & \text{if } \Pr(y = 1 \mid x) \geq 1/2 \\ 0 & \text{otherwise} \end{cases}$$

Bayes Risk

Example: Binary Classification

Binary classification: $\mathcal{Y} = \{0,1\}$ and $\mathcal{A} = \{0,1\}$.

Zero-one loss: $\ell(\hat{y}, y) = \mathbf{1}\{\hat{y} \neq y\} := \begin{cases} 1 & \hat{y} \neq y \\ 0 & \text{otherwise} \end{cases}$ (when $\mathcal{A} = \mathcal{Y}$, use $\hat{y} \in \mathcal{A}$ as shorthand)

$$\begin{aligned} R(h) &= \mathbb{E}[\mathbf{1}\{\hat{y} \neq y\}] = 1 \cdot \Pr(h(x) \neq y) + 0 \cdot \Pr(h(x) = y) \\ &\implies R(h) = \Pr(h(x) \neq y). \end{aligned}$$

Therefore, the Bayes hypothesis returns the most likely label:

$$h^*(x) = \begin{cases} 1 & \text{if } \Pr(y = 1 \mid x) \geq 1/2 \\ 0 & \text{otherwise} \end{cases}$$

Bayes Risk

Example: Binary Classification

Bayes Risk

Example: Binary Classification

$$\implies R(h) = \Pr(h(x) \neq y).$$

Bayes Risk

Example: Binary Classification

$$\implies R(h) = \Pr(h(x) \neq y).$$

Therefore, the Bayes hypothesis returns the most likely label:

Bayes Risk

Example: Binary Classification

$$\implies R(h) = \Pr(h(x) \neq y).$$

Therefore, the Bayes hypothesis returns the most likely label:

$$h^*(x) = \begin{cases} 1 & \text{if } \Pr(y = 1 \mid x) \geq 1/2 \\ 0 & \text{otherwise} \end{cases}$$

Bayes Risk

Example: Binary Classification

$$\implies R(h) = \Pr(h(x) \neq y).$$

Therefore, the Bayes hypothesis returns the most likely label:

$$h^*(x) = \begin{cases} 1 & \text{if } \Pr(y = 1 \mid x) \geq 1/2 \\ 0 & \text{otherwise} \end{cases}$$

Minimizing $R(h)$ over every possible function allows us to define h^* “pointwise” for $x \in \mathcal{X}$.

$$\mathcal{X} = \{1, 2, 3, 4\}$$

Bayes Risk

Example: Binary Classification

h that minimizes:

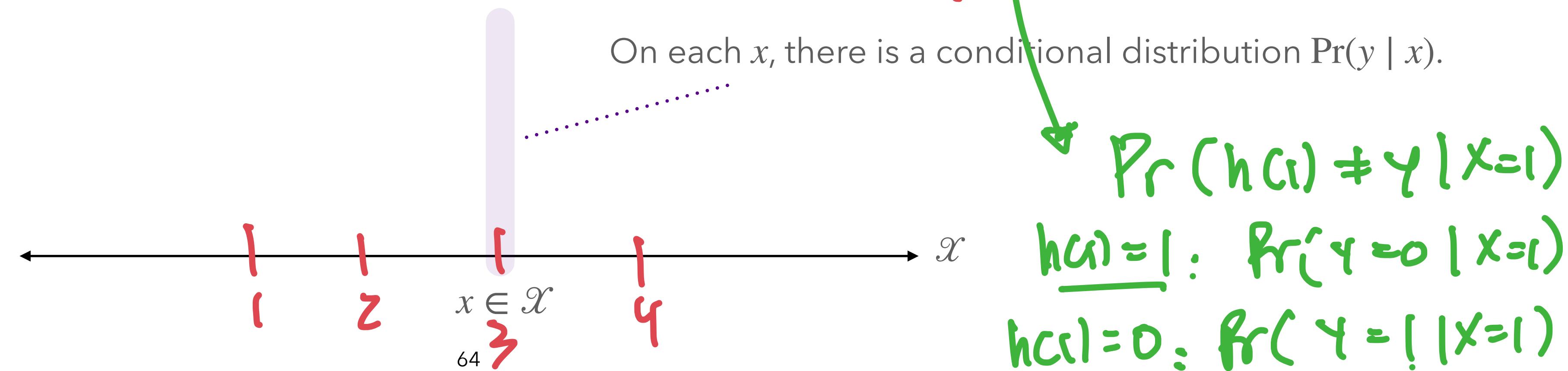
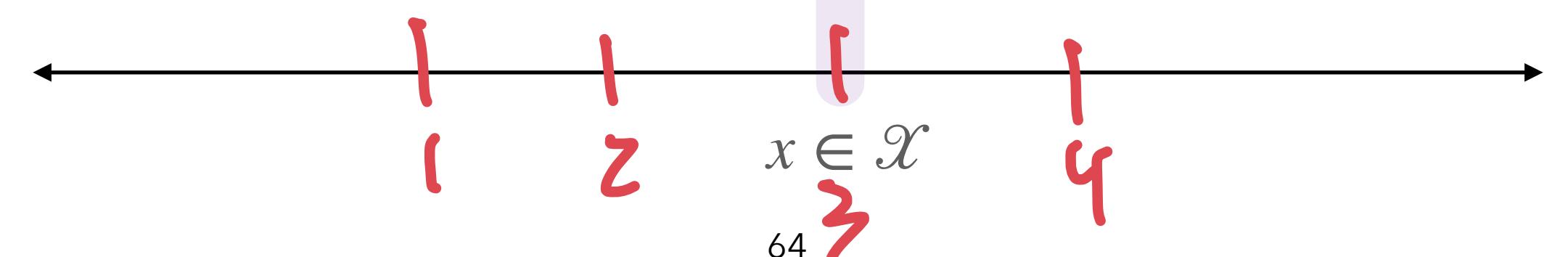
$$R(h) = \Pr[h(x) \neq y] = \mathbb{E}_x [\Pr[h(x) \neq y | x=x]]$$

$$\Rightarrow R(h) = \Pr[h(x) \neq y]. = \Pr(x=1) \Pr[h(1) \neq y | x=1]$$

Therefore, the Bayes hypothesis returns the most likely label:

$$h^*(x) = \begin{cases} 1 & \text{if } \Pr(y=1 | x) \geq 1/2 \\ 0 & \text{otherwise} \end{cases}$$

Minimizing $R(h)$ over every possible function allows us to define h^* "pointwise" for $x \in \mathcal{X}$.



Bayes Risk

Example: Squared Loss Regression

Bayes Risk

Example: Squared Loss Regression

Regression: $\mathcal{Y} = \mathbb{R}$ and $\mathcal{A} = \mathbb{R}$.

Bayes Risk

Example: Squared Loss Regression

Regression: $\mathcal{Y} = \mathbb{R}$ and $\mathcal{A} = \mathbb{R}$.

Squared loss: $\ell(a, y) = (a - y)^2$

Bayes Risk

Example: Squared Loss Regression

Regression: $\mathcal{Y} = \mathbb{R}$ and $\mathcal{A} = \mathbb{R}$.

Squared loss: $\ell(a, y) = (a - y)^2$

$$R(h) := \mathbb{E}[(h(x) - y)^2]$$

Bayes Risk

Example: Squared Loss Regression

Regression: $\mathcal{Y} = \mathbb{R}$ and $\mathcal{A} = \mathbb{R}$.

Squared loss: $\ell(a, y) = (a - y)^2$

$$R(h) := \mathbb{E}[(h(x) - y)^2]$$

Can show that the Bayes hypothesis is:

Bayes Risk

Example: Squared Loss Regression

Regression: $\mathcal{Y} = \mathbb{R}$ and $\mathcal{A} = \mathbb{R}$.

Squared loss: $\ell(a, y) = (a - y)^2$

$$R(h) := \mathbb{E}[(h(x) - y)^2]$$

Can show that the Bayes hypothesis is:

$$h^*(x) = \mathbb{E}[y \mid x]$$

Bayes Risk

Example: Squared Loss Regression

Regression: $\mathcal{Y} = \mathbb{R}$ and $\mathcal{A} = \mathbb{R}$.

Squared loss: $\ell(a, y) = (a - y)^2$

$$R(h) := \mathbb{E}[(h(x) - y)^2]$$

Can show that the Bayes hypothesis is:

$$h^*(x) = \mathbb{E}[y \mid x]$$

Bayes Risk

Example: Binary Classification

Bayes Risk

Example: Binary Classification

$$\implies R(h) = \Pr(h(x) \neq y).$$

Bayes Risk

Example: Binary Classification

$$\implies R(h) = \Pr(h(x) \neq y).$$

Therefore, the Bayes hypothesis returns the most likely label:

Bayes Risk

Example: Binary Classification

$$\implies R(h) = \Pr(h(x) \neq y).$$

Therefore, the Bayes hypothesis returns the most likely label:

$$h^*(x) = \begin{cases} 1 & \text{if } \Pr(y = 1 \mid x) \geq 1/2 \\ 0 & \text{otherwise} \end{cases}$$

Bayes Risk

Example: Binary Classification

$$\implies R(h) = \Pr(h(x) \neq y).$$

Therefore, the Bayes hypothesis returns the most likely label:

$$h^*(x) = \begin{cases} 1 & \text{if } \Pr(y = 1 \mid x) \geq 1/2 \\ 0 & \text{otherwise} \end{cases}$$

Bayes Risk

Example: Binary Classification

$$\implies R(h) = \Pr(h(x) \neq y).$$

Therefore, the Bayes hypothesis returns the most likely label:

$$h^*(x) = \begin{cases} 1 & \text{if } \Pr(y = 1 \mid x) \geq 1/2 \\ 0 & \text{otherwise} \end{cases}$$

Problem: We don't know what $P_{\mathcal{X} \times \mathcal{Y}}$ is in a machine learning problem!

Bayes Risk

Example: Binary Classification

$$\implies R(h) = \Pr(h(x) \neq y).$$

Therefore, the Bayes hypothesis returns the most likely label:

$$h^*(x) = \begin{cases} 1 & \text{if } \Pr(y = 1 \mid x) \geq 1/2 \\ 0 & \text{otherwise} \end{cases}$$

Problem: We don't know what $P_{\mathcal{X} \times \mathcal{Y}}$ is in a machine learning problem!

Bayes Risk

Example: Binary Classification

$$\implies R(h) = \Pr(h(x) \neq y).$$

Therefore, the Bayes hypothesis returns the most likely label:

$$h^*(x) = \begin{cases} 1 & \text{if } \Pr(y = 1 \mid x) \geq 1/2 \\ 0 & \text{otherwise} \end{cases}$$

Problem: We don't know what $P_{\mathcal{X} \times \mathcal{Y}}$ is in a machine learning problem!

Minimizing Risk

What's the smallest possible risk?

$$R(h) := \mathbb{E}_{(x,y) \sim P_{\mathcal{X} \times \mathcal{Y}}} [\ell(h(x), y)]$$

Our ultimate goal will typically be to minimize this quantity!

Problem: We don't know what $P_{\mathcal{X} \times \mathcal{Y}}$ is in a machine learning problem!

Outline

Course Overview and Logistics

Introduction to Machine Learning

Statistical Learning Setup

Statistical Learning: Bayes Risk

Statistical Learning: Empirical Risk and ERM

Statistical Learning: Hypothesis Class

Excess Risk Decomposition and Three Types of Error

Minimizing Risk

What's the smallest possible risk?

$$R(h) := \mathbb{E}_{(x,y) \sim P_{\mathcal{X} \times \mathcal{Y}}} [\ell(h(x), y)]$$

Our ultimate goal will typically be to minimize this quantity!

Problem: We don't know what $P_{\mathcal{X} \times \mathcal{Y}}$ is in a machine learning problem!

But we assume that we have a dataset of i.i.d. samples:

$$D_n := \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$$

Law of Large Numbers

Reminder

Law of Large Numbers

Reminder

If z_1, \dots, z_n are i.i.d. random variables with expected value $\mathbb{E}[z]$, then

Law of Large Numbers

Reminder

If z_1, \dots, z_n are i.i.d. random variables with expected value $\mathbb{E}[z]$, then

$$\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^n z_i = \mathbb{E}[z], \text{ with probability 1.}$$

*all expected values are same
C identically distributed*

Law of Large Numbers

Reminder

If z_1, \dots, z_n are i.i.d. random variables with expected value $\mathbb{E}[z]$, then

$$\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^n z_i = \mathbb{E}[z], \text{ with probability 1.}$$

If $D_n = \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$ is drawn i.i.d. from $P_{\mathcal{X} \times \mathcal{Y}}$, then for a fixed $h : \mathcal{X} \rightarrow \mathcal{A}$ and $\ell : \mathcal{A} \times \mathcal{Y} \rightarrow \mathbb{R}$,

Law of Large Numbers

Reminder

If z_1, \dots, z_n are i.i.d. random variables with expected value $\mathbb{E}[z]$, then

$$\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^n z_i = \mathbb{E}[z], \text{ with probability 1.}$$

If $D_n = \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$ is drawn i.i.d. from $P_{\mathcal{X} \times \mathcal{Y}}$, then for a fixed $h : \mathcal{X} \rightarrow \mathcal{A}$ and $\ell : \mathcal{A} \times \mathcal{Y} \rightarrow \mathbb{R}$,

$$\begin{array}{ccccccc} z_1 & \dots & z_n \\ \ell(h(x^{(1)}), y^{(1)}), \dots, \ell(h(x^{(n)}), y^{(n)}) \end{array}$$

Law of Large Numbers

Reminder

If z_1, \dots, z_n are i.i.d. random variables with expected value $\mathbb{E}[z]$, then

$$\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^n z_i = \mathbb{E}[z], \text{ with probability 1.}$$

If $D_n = \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$ is drawn i.i.d. from $P_{\mathcal{X} \times \mathcal{Y}}$, then for a fixed $h : \mathcal{X} \rightarrow \mathcal{A}$ and $\ell : \mathcal{A} \times \mathcal{Y} \rightarrow \mathbb{R}$,

$$\ell(h(x^{(1)}), y^{(1)}), \dots, \ell(h(x^{(n)}), y^{(n)})$$

are all random variables...

Empirical Risk

Definition

Empirical Risk

Definition

Let $D_n := \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$ be drawn i.i.d. from $P_{\mathcal{X} \times \mathcal{Y}}$.

Empirical Risk

Definition

Let $D_n := \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$ be drawn i.i.d. from $P_{\mathcal{X} \times \mathcal{Y}}$.

The empirical risk of $h : \mathcal{X} \rightarrow \mathcal{A}$ with respect to D_n is

Empirical Risk

Definition

Let $D_n := \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$ be drawn i.i.d. from $P_{\mathcal{X} \times \mathcal{Y}}$.

The empirical risk of $h : \mathcal{X} \rightarrow \mathcal{A}$ with respect to D_n is

$$\hat{R}_n(h) = \frac{1}{n} \sum_{i=1}^n \underbrace{\ell(h(x^{(i)}), y^{(i)})}_{\text{random variables}}. \approx \mathbb{E} [\ell(h(x), y)] = R(h)$$

Empirical Risk

Definition

Let $D_n := \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$ be drawn i.i.d. from $P_{\mathcal{X} \times \mathcal{Y}}$.

The empirical risk of $h : \mathcal{X} \rightarrow \mathcal{A}$ with respect to D_n is

$$\hat{R}_n(h) = \frac{1}{n} \sum_{i=1}^n \ell(h(x^{(i)}), y^{(i)}).$$

By the strong law of large numbers,

Empirical Risk

Definition

Let $D_n := \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$ be drawn i.i.d. from $P_{\mathcal{X} \times \mathcal{Y}}$.

The empirical risk of $h : \mathcal{X} \rightarrow \mathcal{A}$ with respect to D_n is

$$\hat{R}_n(h) = \overline{\frac{1}{n} \sum_{i=1}^n \ell(h(x^{(i)}), y^{(i)})}.$$

By the ~~strong~~ law of large numbers,

$$\lim_{n \rightarrow \infty} \hat{R}_n(h) = R(h) \text{ almost surely.}$$

Empirical Risk

Definition

Let $D_n := \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$ be drawn i.i.d. from $P_{\mathcal{X} \times \mathcal{Y}}$.

The empirical risk of $h : \mathcal{X} \rightarrow \mathcal{A}$ with respect to D_n is

$$\hat{R}_n(h) = \frac{1}{n} \sum_{i=1}^n \ell(h(x^{(i)}), y^{(i)}).$$

By the strong law of large numbers,

$$\lim_{n \rightarrow \infty} \hat{R}_n(h) = R(h) \text{ almost surely.}$$

But, in practice, we only have a finite sample.

Empirical Risk Minimization

Definition

Empirical Risk Minimization

Definition

The empirical risk of $h : \mathcal{X} \rightarrow \mathcal{A}$ with respect to D_n is

Empirical Risk Minimization

Definition

The empirical risk of $h : \mathcal{X} \rightarrow \mathcal{A}$ with respect to D_n is

$$\hat{R}_n(h) = \frac{1}{n} \sum_{i=1}^n \ell(h(x^{(i)}), y^{(i)}).$$

Empirical Risk Minimization

Definition

The empirical risk of $h : \mathcal{X} \rightarrow \mathcal{A}$ with respect to D_n is

$$\hat{R}_n(h) = \frac{1}{n} \sum_{i=1}^n \ell(h(x^{(i)}), y^{(i)}).$$

The empirical risk minimizer (ERM) (over all functions $h : \mathcal{X} \rightarrow \mathcal{A}$) is a function \hat{h} satisfying

Empirical Risk Minimization

Definition

The empirical risk of $h : \mathcal{X} \rightarrow \mathcal{A}$ with respect to D_n is

$$\hat{R}_n(h) = \frac{1}{n} \sum_{i=1}^n \ell(h(x^{(i)}), y^{(i)}).$$

The empirical risk minimizer (ERM) (over all functions $h : \mathcal{X} \rightarrow \mathcal{A}$) is a function \hat{h} satisfying

$$\hat{h} \in \arg \min_h \hat{R}_n(h).$$

Empirical Risk Minimization

Definition

The empirical risk of $h : \mathcal{X} \rightarrow \mathcal{A}$ with respect to D_n is

$$\hat{R}_n(h) = \frac{1}{n} \sum_{i=1}^n \ell(h(x^{(i)}), y^{(i)}).$$

The empirical risk minimizer (ERM) (over all functions $h : \mathcal{X} \rightarrow \mathcal{A}$) is a function \hat{h} satisfying

$$\hat{h} \in \arg \min_h \hat{R}_n(h).$$

In an ideal world, we want the Bayes hypothesis:

Empirical Risk Minimization

Definition

The empirical risk of $h : \mathcal{X} \rightarrow \mathcal{A}$ with respect to D_n is

$$\hat{R}_n(h) = \frac{1}{n} \sum_{i=1}^n \ell(h(x^{(i)}), y^{(i)}).$$

The empirical risk minimizer (ERM) (over all functions $h : \mathcal{X} \rightarrow \mathcal{A}$) is a function \hat{h} satisfying

$$\hat{h} \in \arg \min_h \hat{R}_n(h).$$

In an ideal world, we want the Bayes hypothesis:

$$h^* \in \arg \min_h R(h).$$

Empirical Risk Minimization

Definition

The empirical risk of $h : \mathcal{X} \rightarrow \mathcal{A}$ with respect to D_n is

$$\hat{R}_n(h) = \frac{1}{n} \sum_{i=1}^n \ell(h(x^{(i)}), y^{(i)}).$$

The empirical risk minimizer (ERM) (over all functions $h : \mathcal{X} \rightarrow \mathcal{A}$) is a function \hat{h} satisfying

$$\hat{h} \in \arg \min_h \hat{R}_n(h).$$

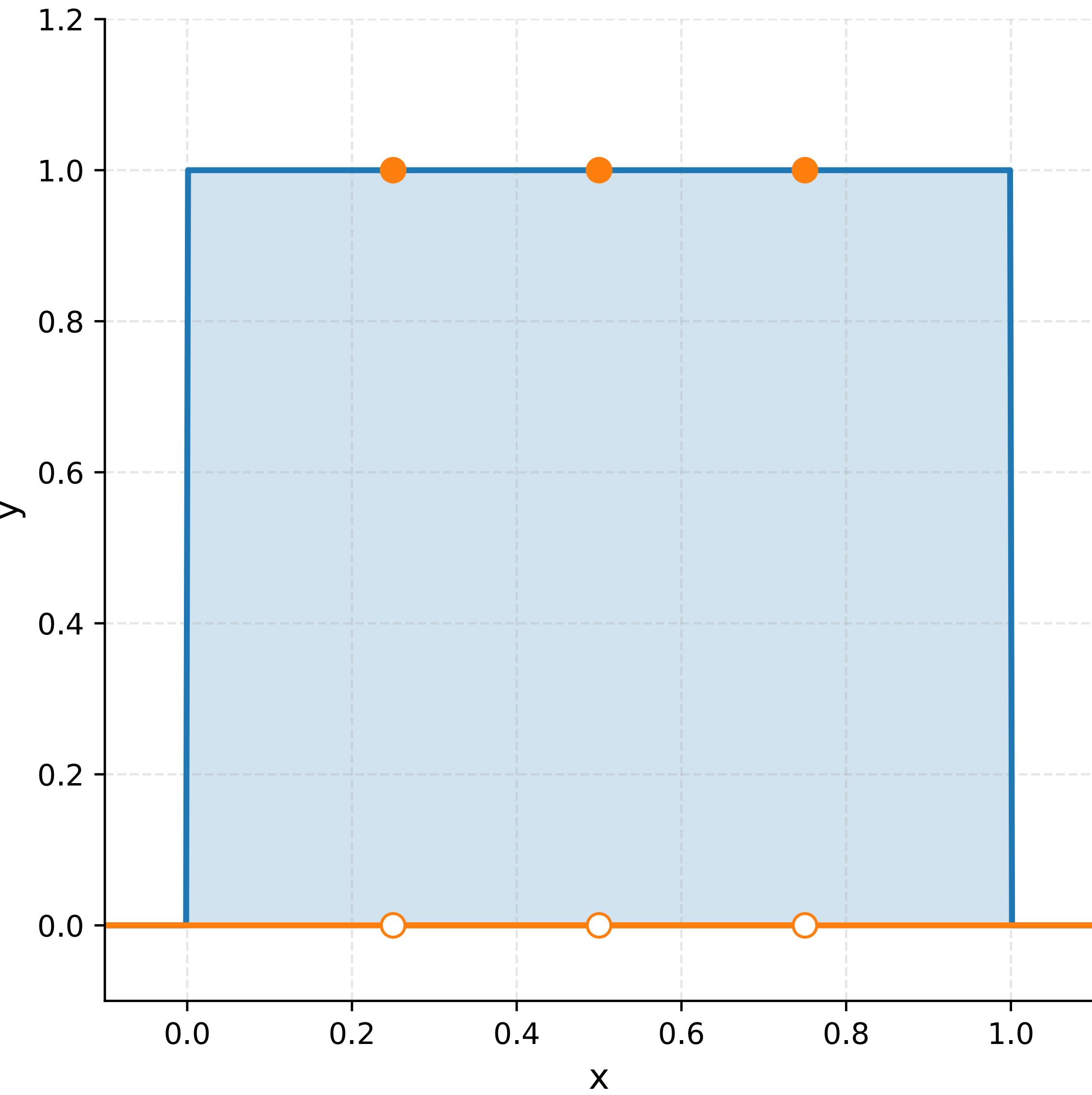
Is this a good proxy?

In an ideal world, we want the Bayes hypothesis:

$$h^* \in \arg \min_h R(h).$$

Empirical Risk Minimization

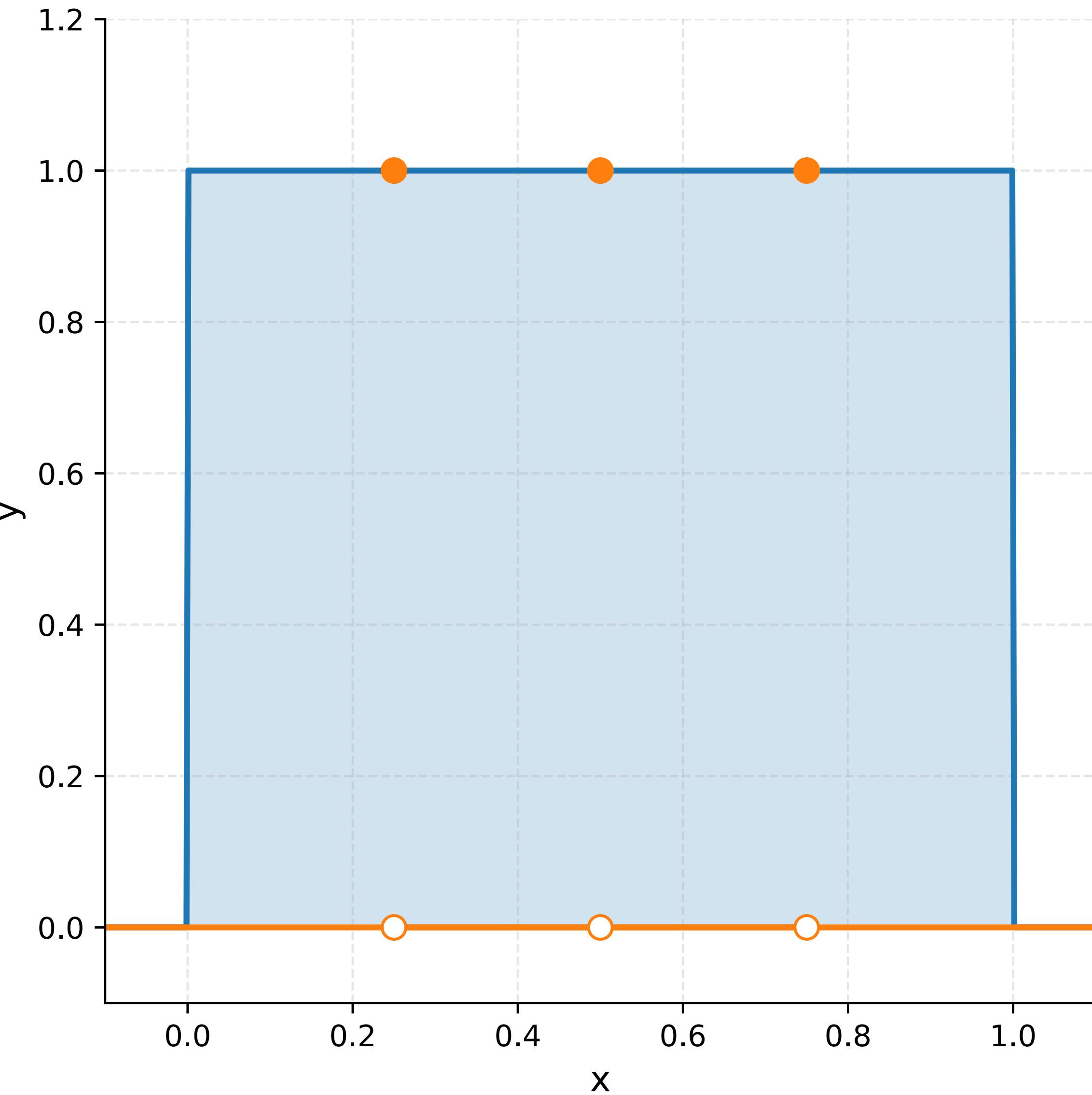
Example



Empirical Risk Minimization

Example

$P_{\mathcal{X}} = \text{Unif}([0,1])$ and $Y = 1$ always.

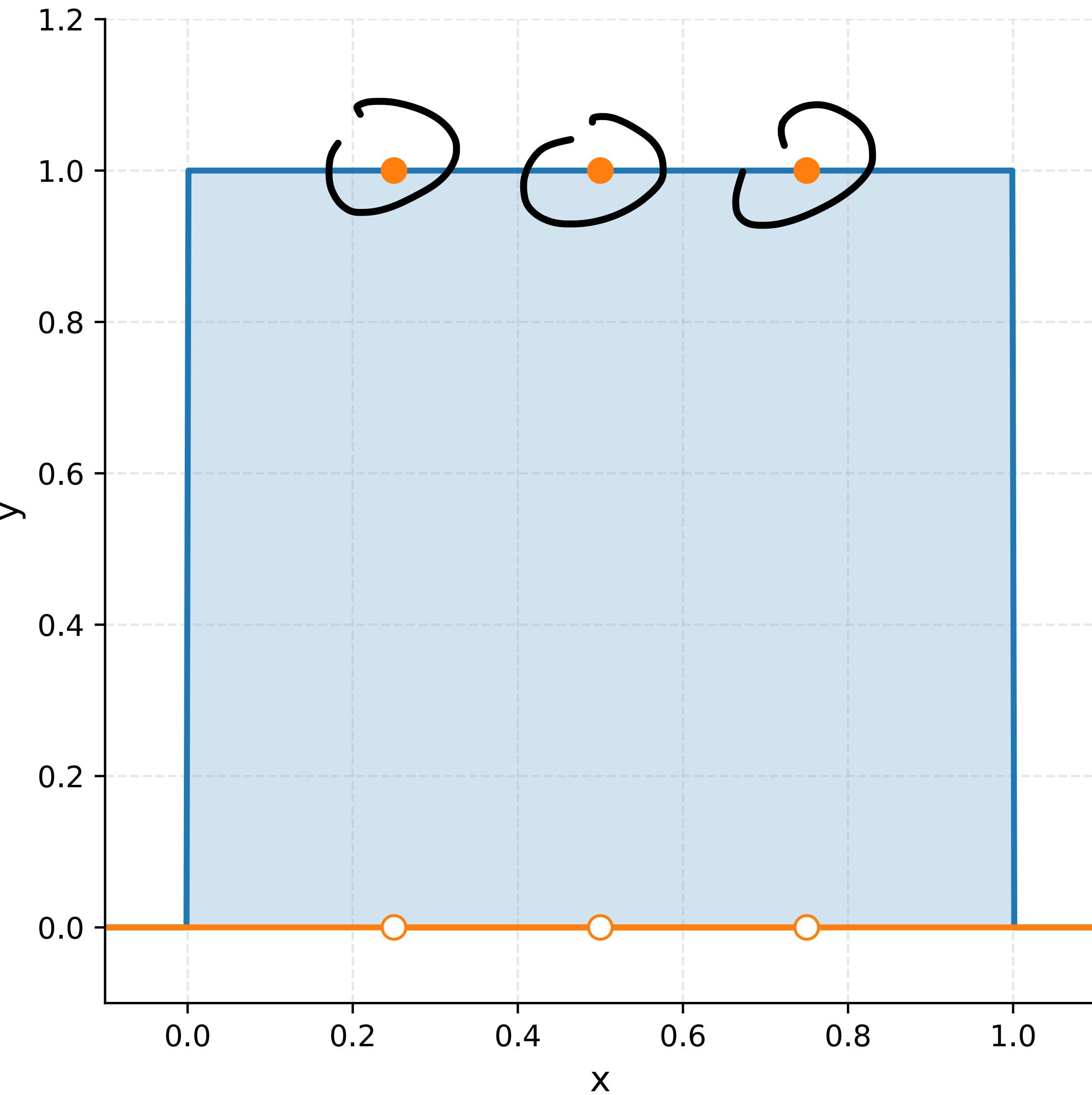


Empirical Risk Minimization

Example

$P_{\mathcal{X}} = \text{Unif}([0,1])$ and $Y = 1$ always.

Draw i.i.d. sample of size $n = 3$:



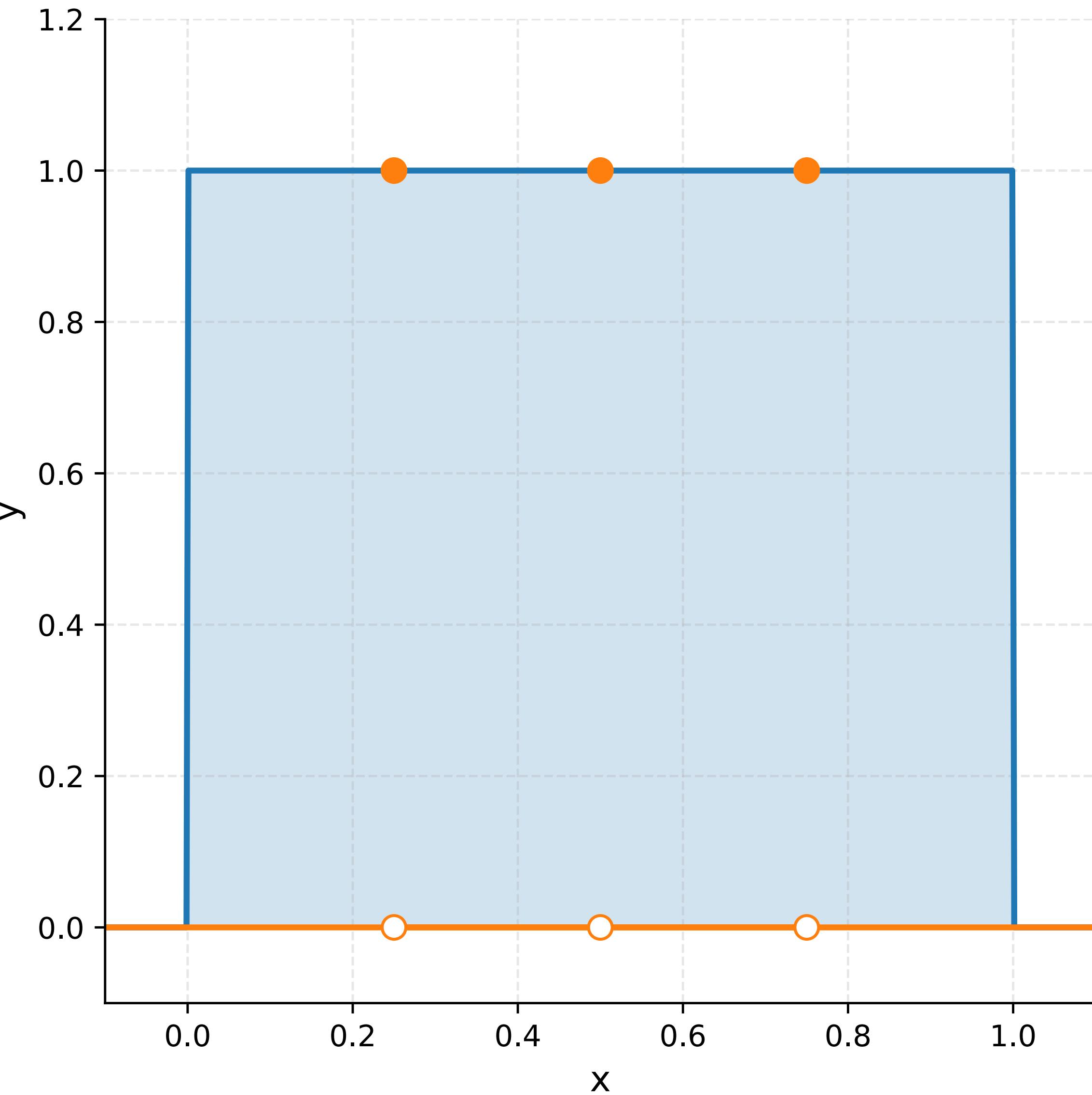
Empirical Risk Minimization

Example

$P_{\mathcal{X}} = \text{Unif}([0,1])$ and $Y = 1$ always.

Draw i.i.d. sample of size $n = 3$:

$$D_n = \{(0.25, 1), (0.5, 1), (0.75, 1)\}.$$



Empirical Risk Minimization

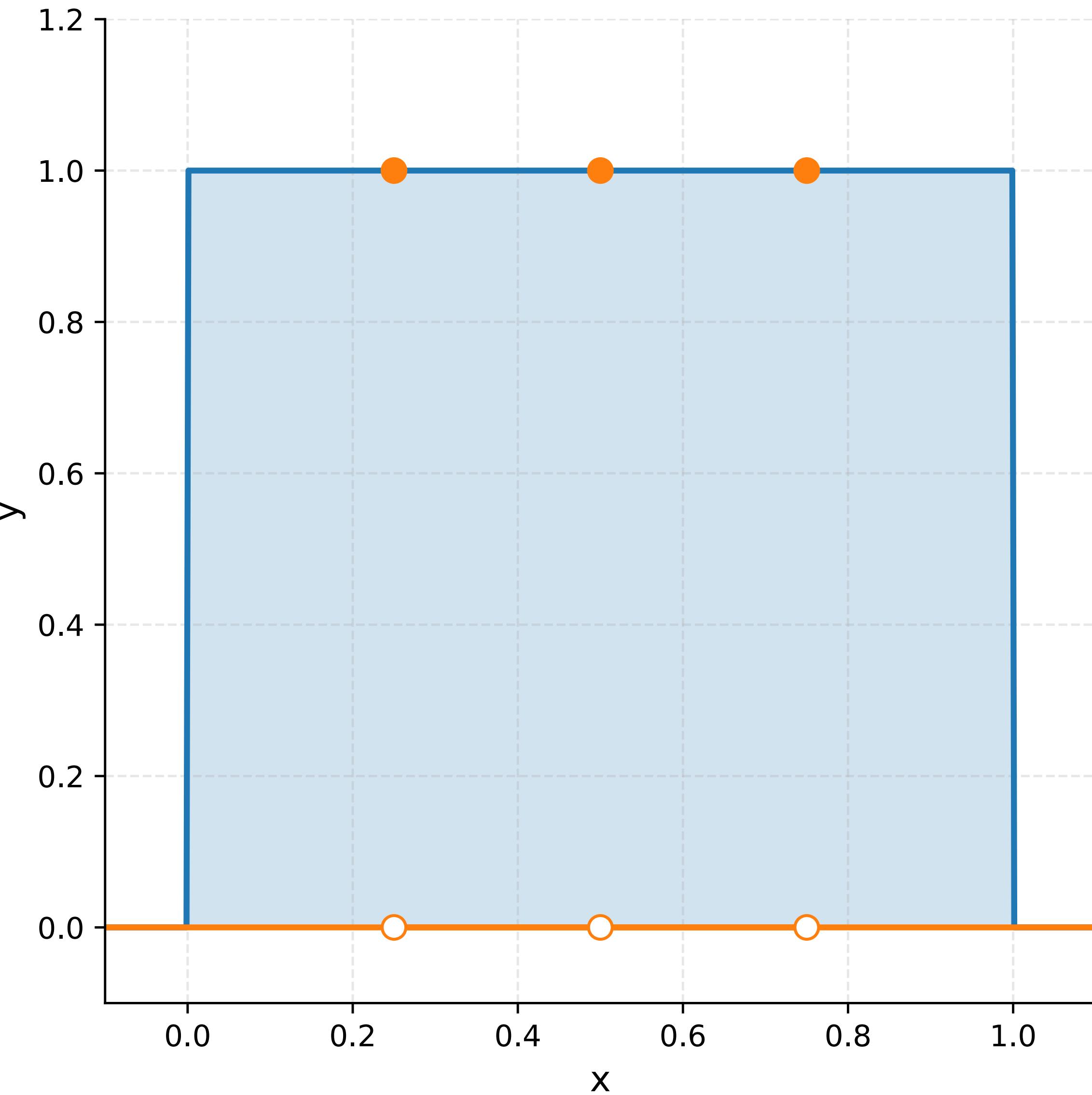
Example

$P_{\mathcal{X}} = \text{Unif}([0,1])$ and $Y = 1$ always.

Draw i.i.d. sample of size $n = 3$:

$$D_n = \{(0.25, 1), (0.5, 1), (0.75, 1)\}.$$

Under $\ell(\hat{y}, y) = \mathbf{1}\{\hat{y} \neq y\}$ (zero-one loss):



Empirical Risk Minimization

Example

$P_{\mathcal{X}} = \text{Unif}([0,1])$ and $Y = 1$ always.

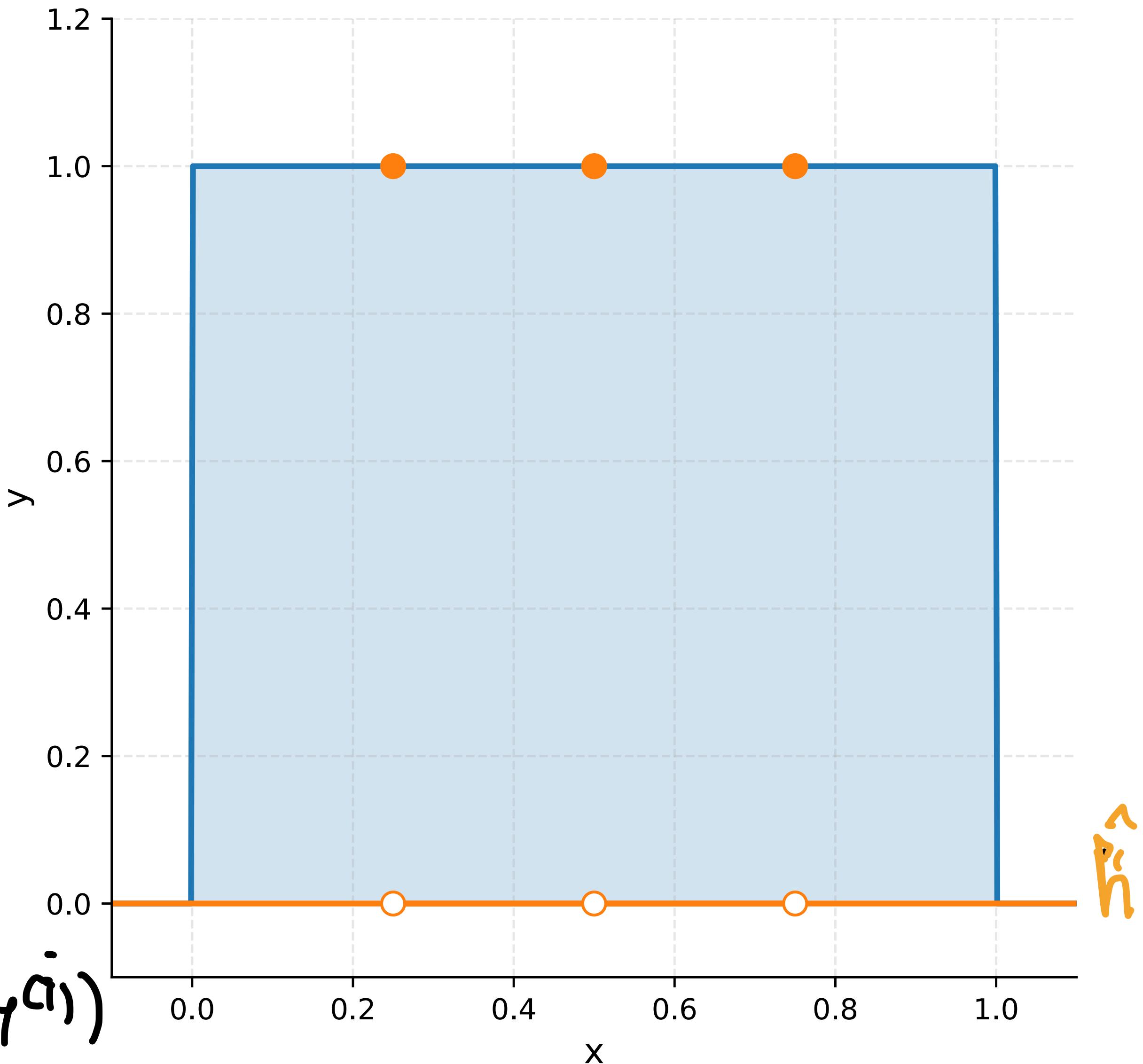
Draw i.i.d. sample of size $n = 3$:

$$D_n = \{(0.25, 1), (0.5, 1), (0.75, 1)\}.$$

Under $\ell(\hat{y}, y) = \mathbf{1}\{\hat{y} \neq y\}$ (zero-one loss):

$$\hat{h}(x) = \begin{cases} 1 & \text{if } x \in \{0.25, 0.5, 0.75\} \\ 0 & \text{otherwise} \end{cases}$$

$$\hat{R}_n(h) = \frac{1}{3} \sum_{i=1}^3 \ell(h(x^{(i)}), y^{(i)})$$



Empirical Risk Minimization

Example

$P_{\mathcal{X}} = \text{Unif}([0,1])$ and $Y = 1$ always.

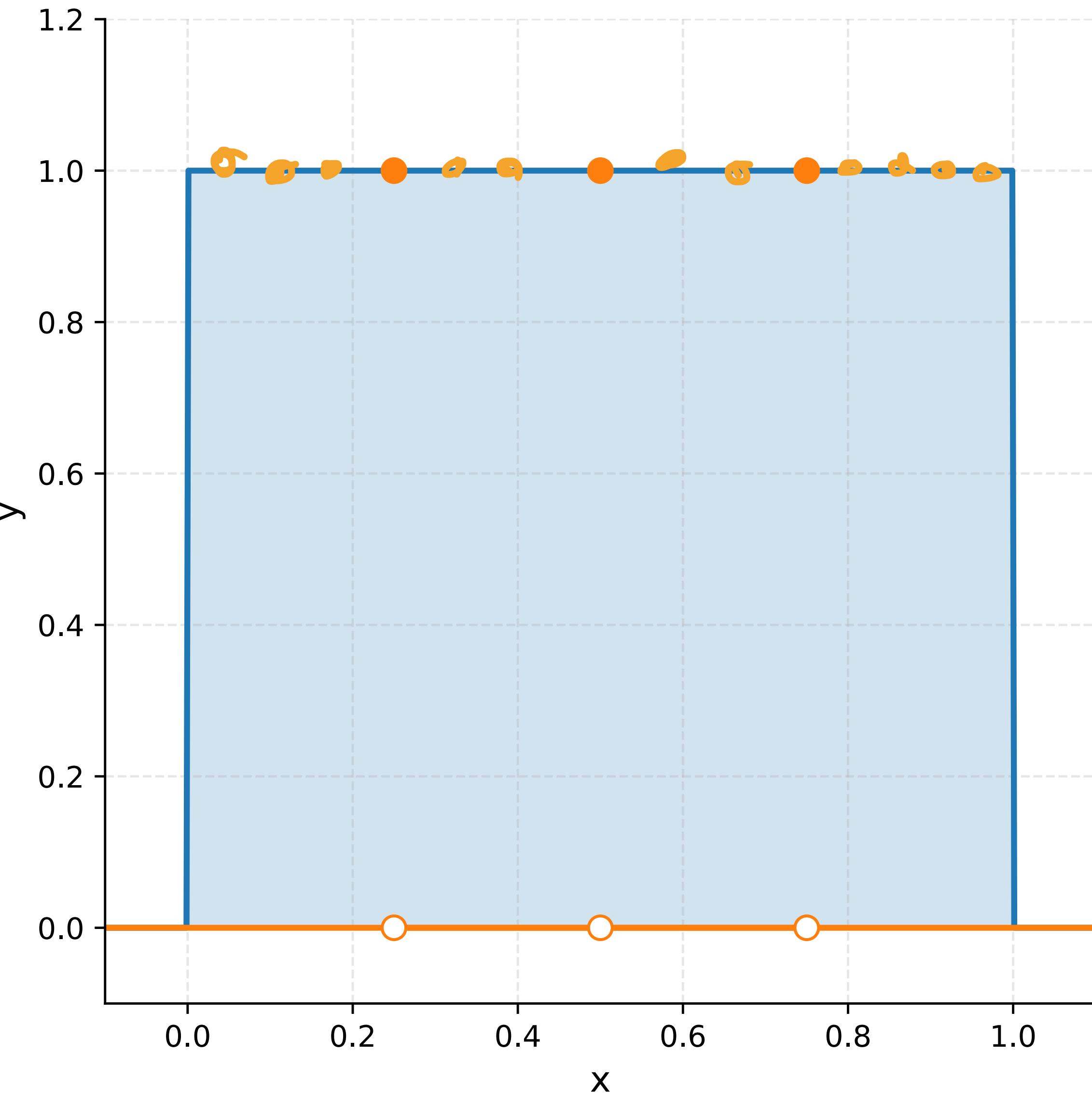
Draw i.i.d. sample of size $n = 3$:

$$D_n = \{(0.25, 1), (0.5, 1), (0.75, 1)\}.$$

Under $\ell(\hat{y}, y) = \mathbf{1}\{\hat{y} \neq y\}$ (zero-one loss):

$$\hat{h}(x) = \begin{cases} 1 & \text{if } x \in \{0.25, 0.5, 0.75\} \\ 0 & \text{otherwise} \end{cases}$$

This is an ERM.



Empirical Risk Minimization

Example

$P_{\mathcal{X}} = \text{Unif}([0,1])$ and $Y = 1$ always.

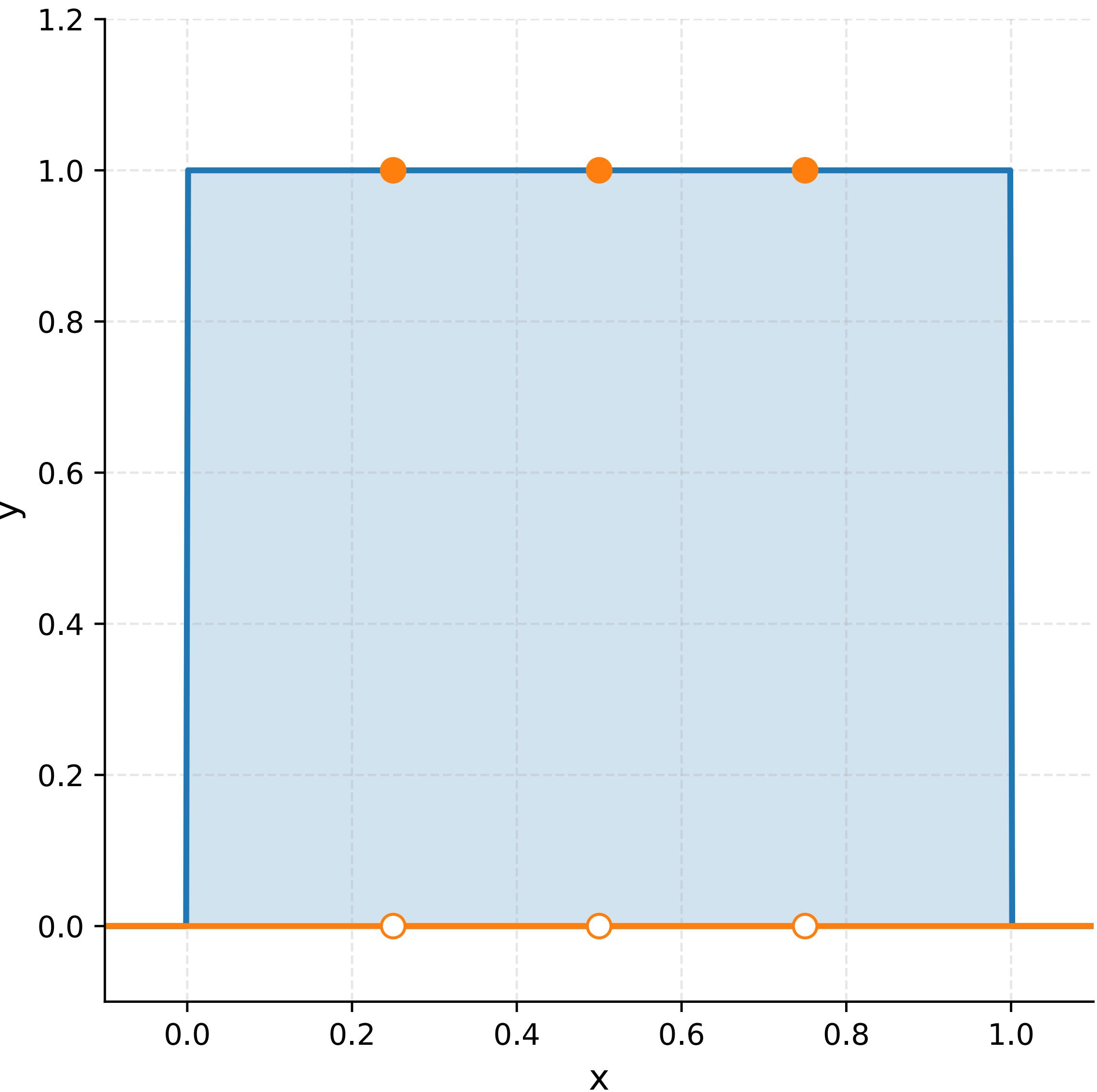
Draw i.i.d. sample of size $n = 3$:

$$D_n = \{(0.25, 1), (0.5, 1), (0.75, 1)\}.$$

Under $\ell(\hat{y}, y) = (\hat{y} - y)^2$ (squared loss):

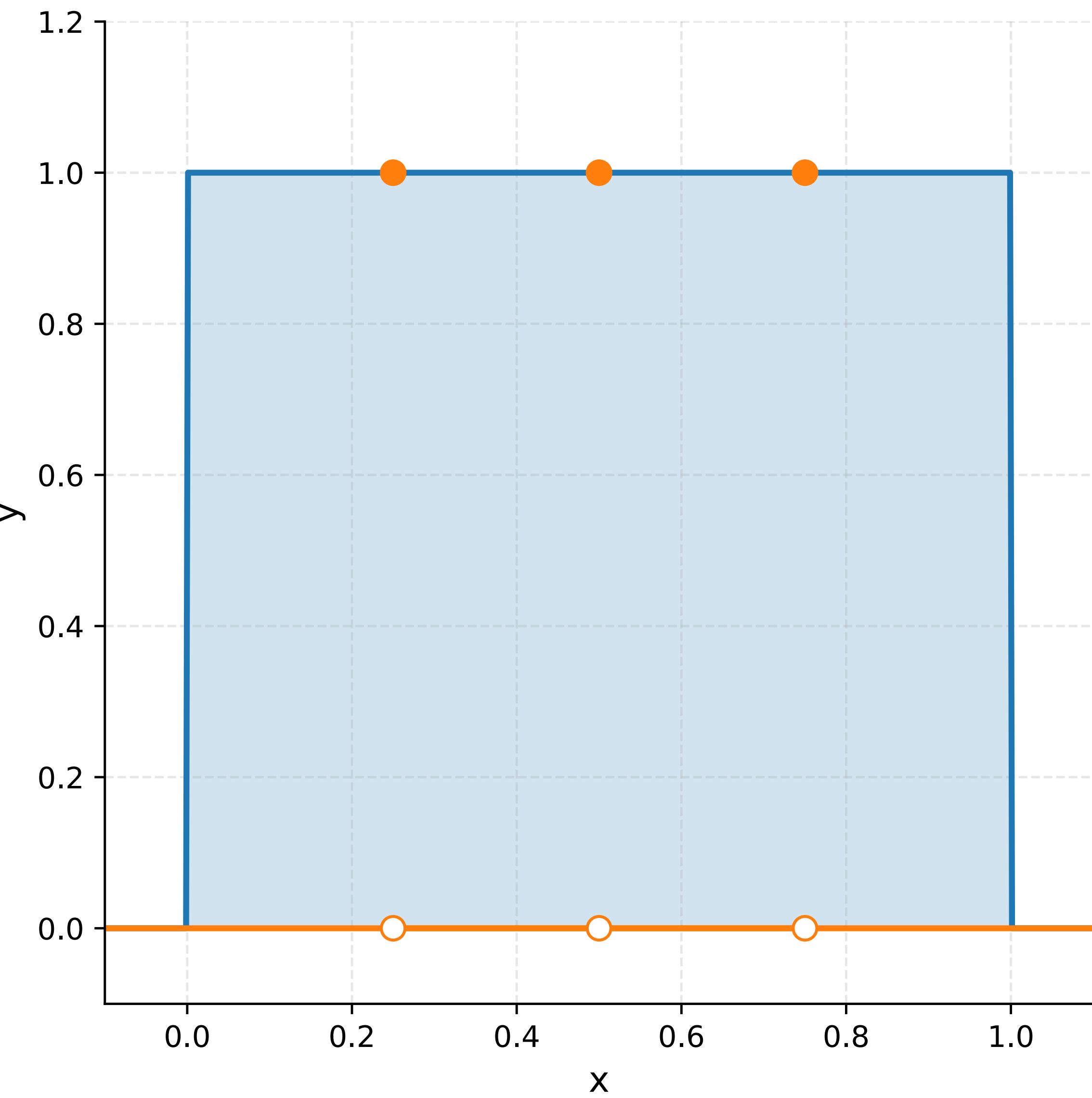
$$\hat{h}(x) = \begin{cases} 1 & \text{if } x \in \{0.25, 0.5, 0.75\} \\ 0 & \text{otherwise} \end{cases}$$

This is an ERM.



Empirical Risk Minimization

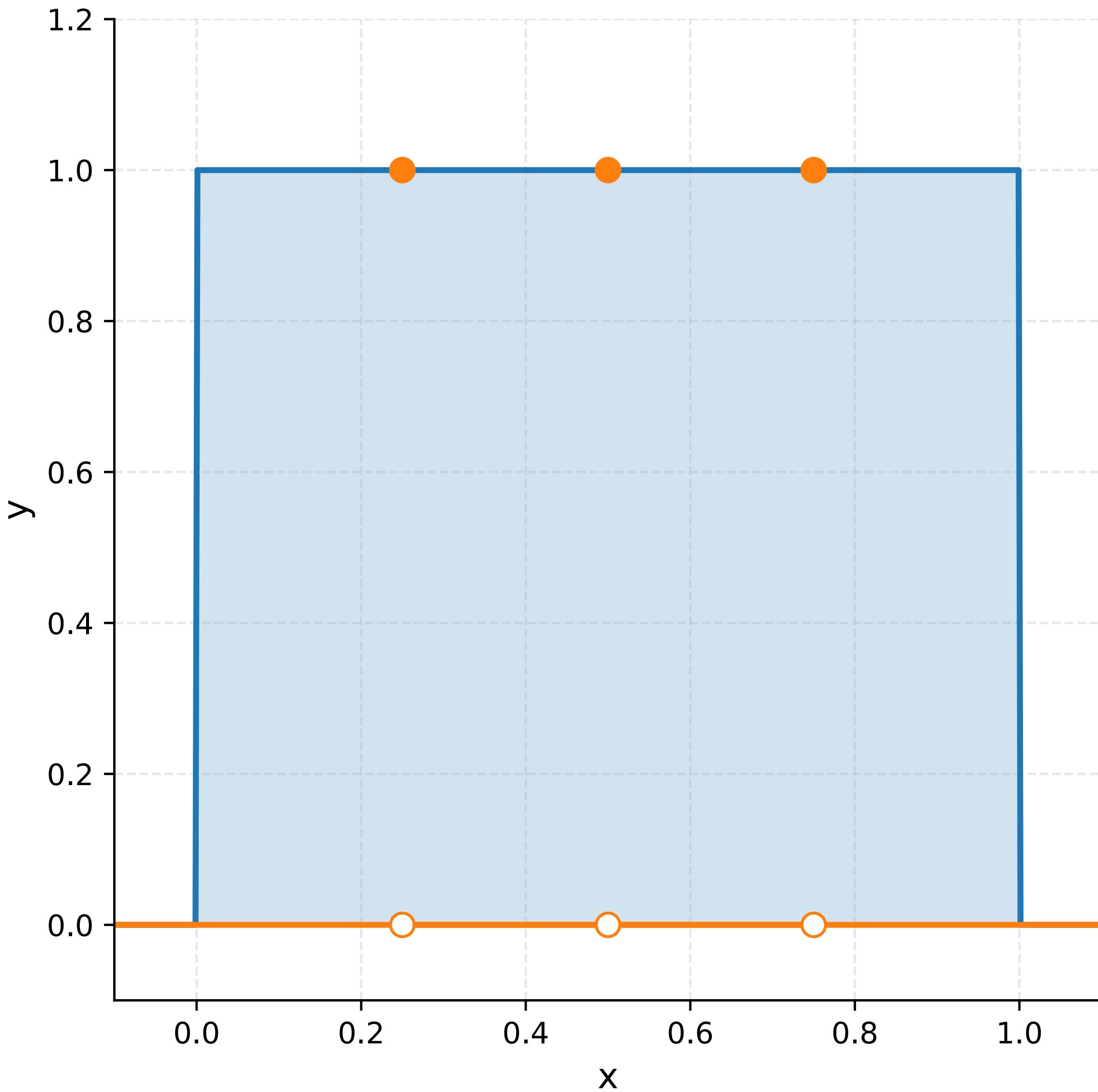
Example: Gap with true risk



Empirical Risk Minimization

Example: Gap with true risk

$$\hat{h}(x) = \begin{cases} 1 & \text{if } x \in \{0.25, 0.5, 0.75\} \\ 0 & \text{otherwise} \end{cases}$$

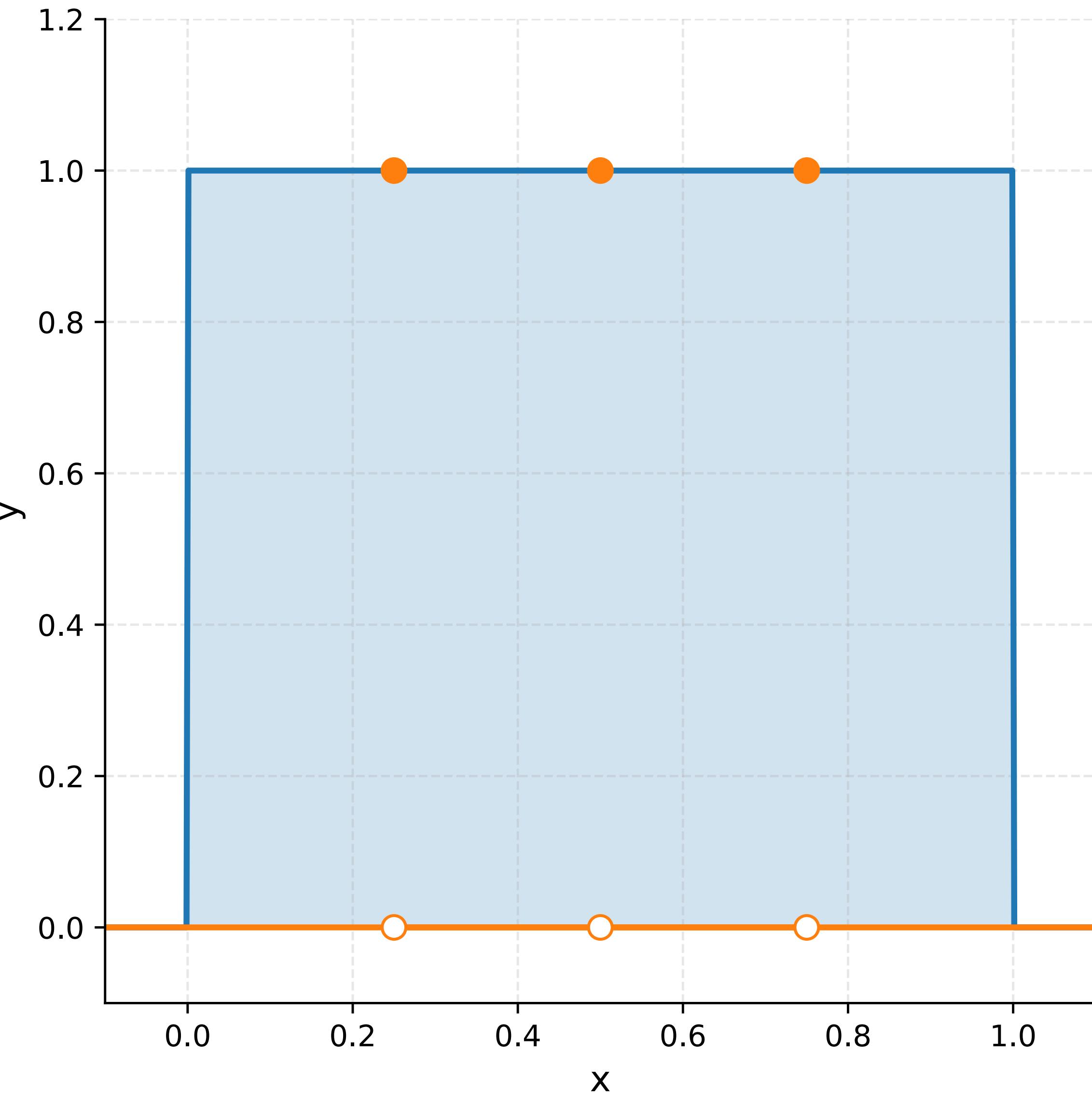


Empirical Risk Minimization

Example: Gap with true risk

$$\hat{h}(x) = \begin{cases} 1 & \text{if } x \in \{0.25, 0.5, 0.75\} \\ 0 & \text{otherwise} \end{cases}$$

Empirical risk under zero-one loss:



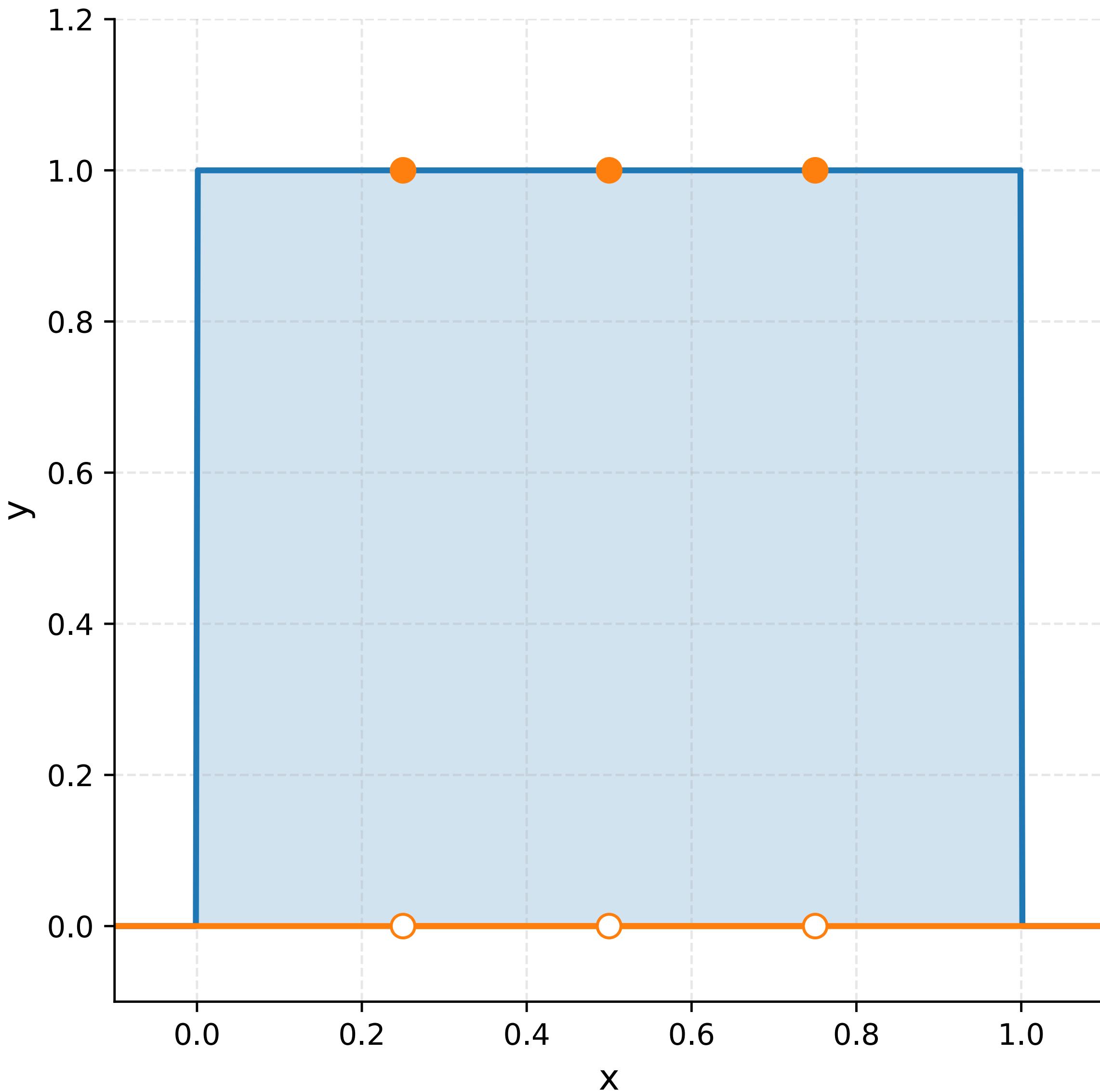
Empirical Risk Minimization

Example: Gap with true risk

$$\hat{h}(x) = \begin{cases} 1 & \text{if } x \in \{0.25, 0.5, 0.75\} \\ 0 & \text{otherwise} \end{cases}$$

Empirical risk under zero-one loss:

$$\hat{R}_n(\hat{h}) = \frac{1}{3} \sum_{i=1}^3 \mathbf{1}\{\hat{h}(x^{(i)}) \neq y^{(i)}\} = 0$$



Empirical Risk Minimization

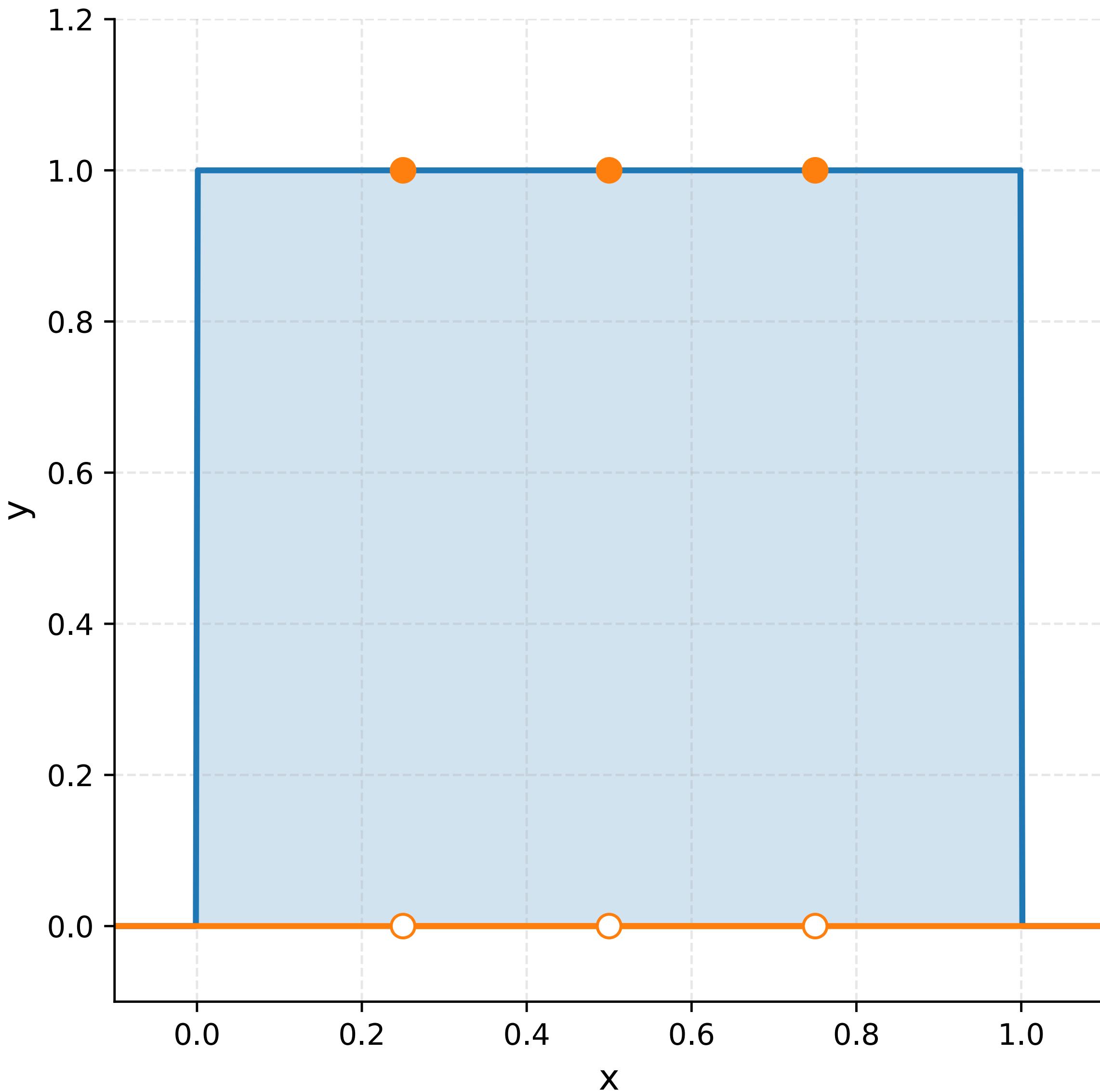
Example: Gap with true risk

$$\hat{h}(x) = \begin{cases} 1 & \text{if } x \in \{0.25, 0.5, 0.75\} \\ 0 & \text{otherwise} \end{cases}$$

Empirical risk under zero-one loss:

$$\hat{R}_n(\hat{h}) = \frac{1}{3} \sum_{i=1}^3 \mathbf{1}\{\hat{h}(x^{(i)}) \neq y^{(i)}\} = 0$$

True risk under zero-one loss:



Empirical Risk Minimization

Example: Gap with true risk

$$\hat{h}(x) = \begin{cases} 1 & \text{if } x \in \{0.25, 0.5, 0.75\} \\ 0 & \text{otherwise} \end{cases}$$

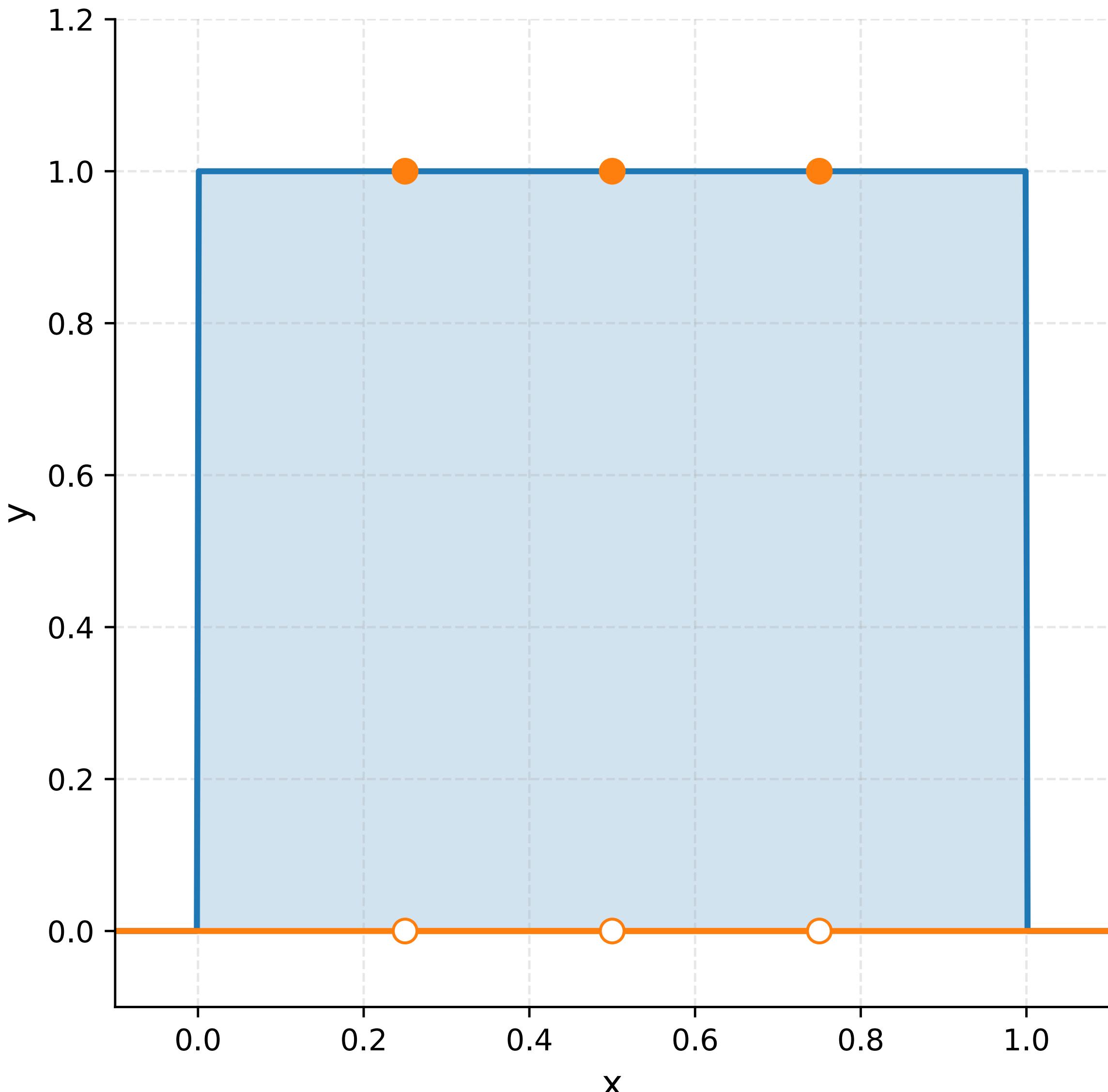
Empirical risk under zero-one loss:

$$\hat{R}_n(\hat{h}) = \frac{1}{3} \sum_{i=1}^3 \mathbf{1}\{\hat{h}(x^{(i)}) \neq y^{(i)}\} = 0$$

True risk under zero-one loss:

$$R(\hat{h}) = \mathbb{E}[\mathbf{1}\{\hat{h}(x) \neq y\}] = \Pr(\hat{h}(x) \neq y) = 1$$

↓
V_{hif} is continuous.



Empirical Risk Minimization

What went wrong?

Empirical Risk Minimization

What went wrong?

$$D_n = \{(0.25, 1), (0.5, 1), (0.75, 1)\}$$

Empirical Risk Minimization

What went wrong?

$$D_n = \{(0.25, 1), (0.5, 1), (0.75, 1)\}$$

$$\hat{h}(x) = \begin{cases} 1 & \text{if } x \in \{0.25, 0.5, 0.75\} \\ 0 & \text{otherwise} \end{cases}$$

Empirical Risk Minimization

What went wrong?

$$D_n = \{(0.25, 1), (0.5, 1), (0.75, 1)\}$$

$$\hat{h}(x) = \begin{cases} 1 & \text{if } x \in \{0.25, 0.5, 0.75\} \\ 0 & \text{otherwise} \end{cases}$$

This failed spectacularly because \hat{h} just memorized the data.

Empirical Risk Minimization

What went wrong?

$$D_n = \{(0.25, 1), (0.5, 1), (0.75, 1)\}$$

$$\hat{h}(x) = \begin{cases} 1 & \text{if } x \in \{0.25, 0.5, 0.75\} \\ 0 & \text{otherwise} \end{cases}$$

This failed spectacularly because \hat{h} just memorized the data.

In ML, we want our hypotheses to **generalize** from training data to new data.

Empirical Risk Minimization

What went wrong?

$$D_n = \{(0.25, 1), (0.5, 1), (0.75, 1)\}$$

$$\hat{h}(x) = \begin{cases} 1 & \text{if } x \in \{0.25, 0.5, 0.75\} \\ 0 & \text{otherwise} \end{cases}$$

This failed spectacularly because \hat{h} just memorized the data.

In ML, we want our hypotheses to **generalize** from training data to new data.

In order to do this, we need to smooth things out:

Empirical Risk Minimization

What went wrong?

$$D_n = \{(0.25, 1), (0.5, 1), (0.75, 1)\}$$

$$\hat{h}(x) = \begin{cases} 1 & \text{if } x \in \{0.25, 0.5, 0.75\} \\ 0 & \text{otherwise} \end{cases}$$

This failed spectacularly because \hat{h} just memorized the data.

In ML, we want our hypotheses to **generalize** from training data to new data.

In order to do this, we need to smooth things out:

Model how information is structured in input space \mathcal{X} to unobserved parts of \mathcal{X} !

Outline

Course Overview and Logistics

Introduction to Machine Learning

Statistical Learning Setup

Statistical Learning: Bayes Risk

Statistical Learning: Empirical Risk and ERM

Statistical Learning: Hypothesis Class

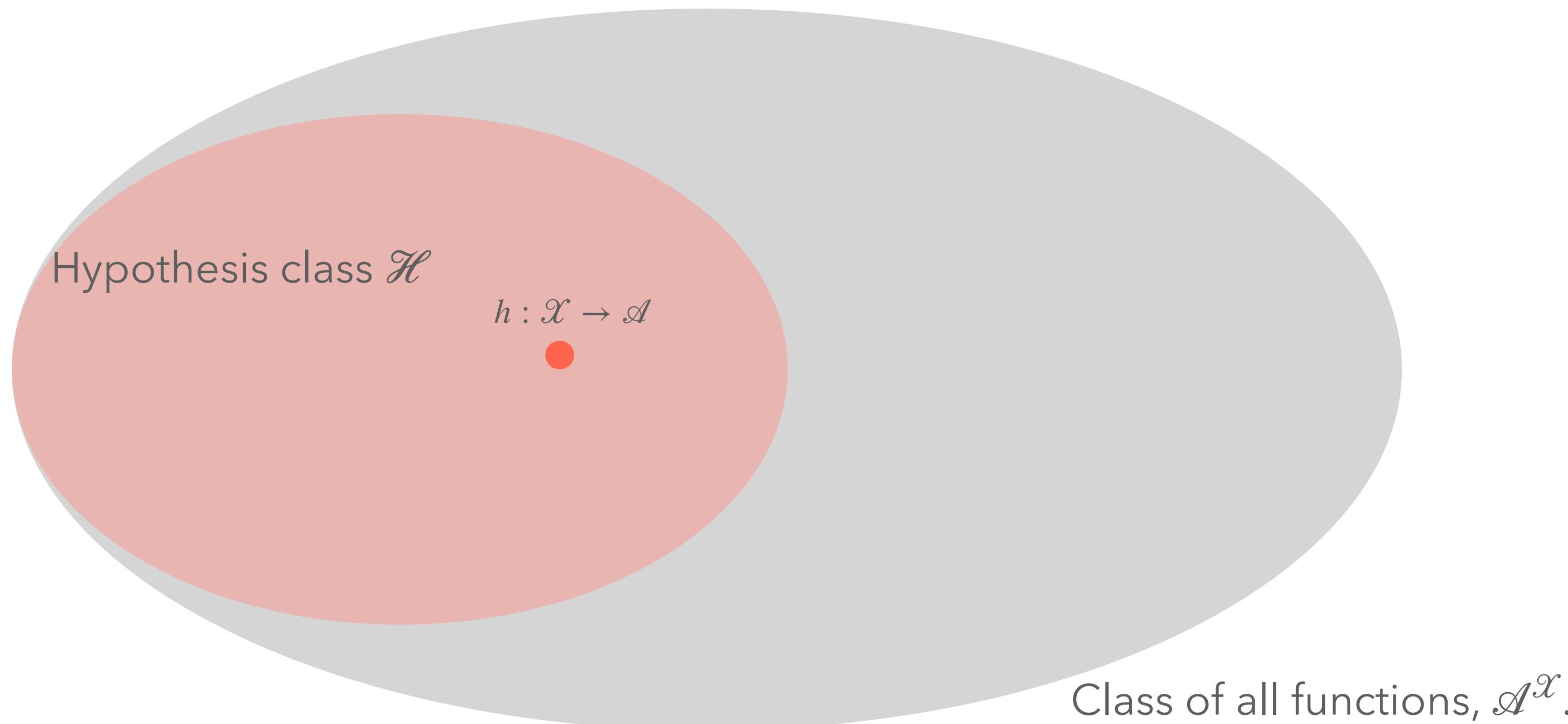
Excess Risk Decomposition and Three Types of Error

Hypothesis Class

Definition

$$\mathcal{A} = \{0, 1\}$$

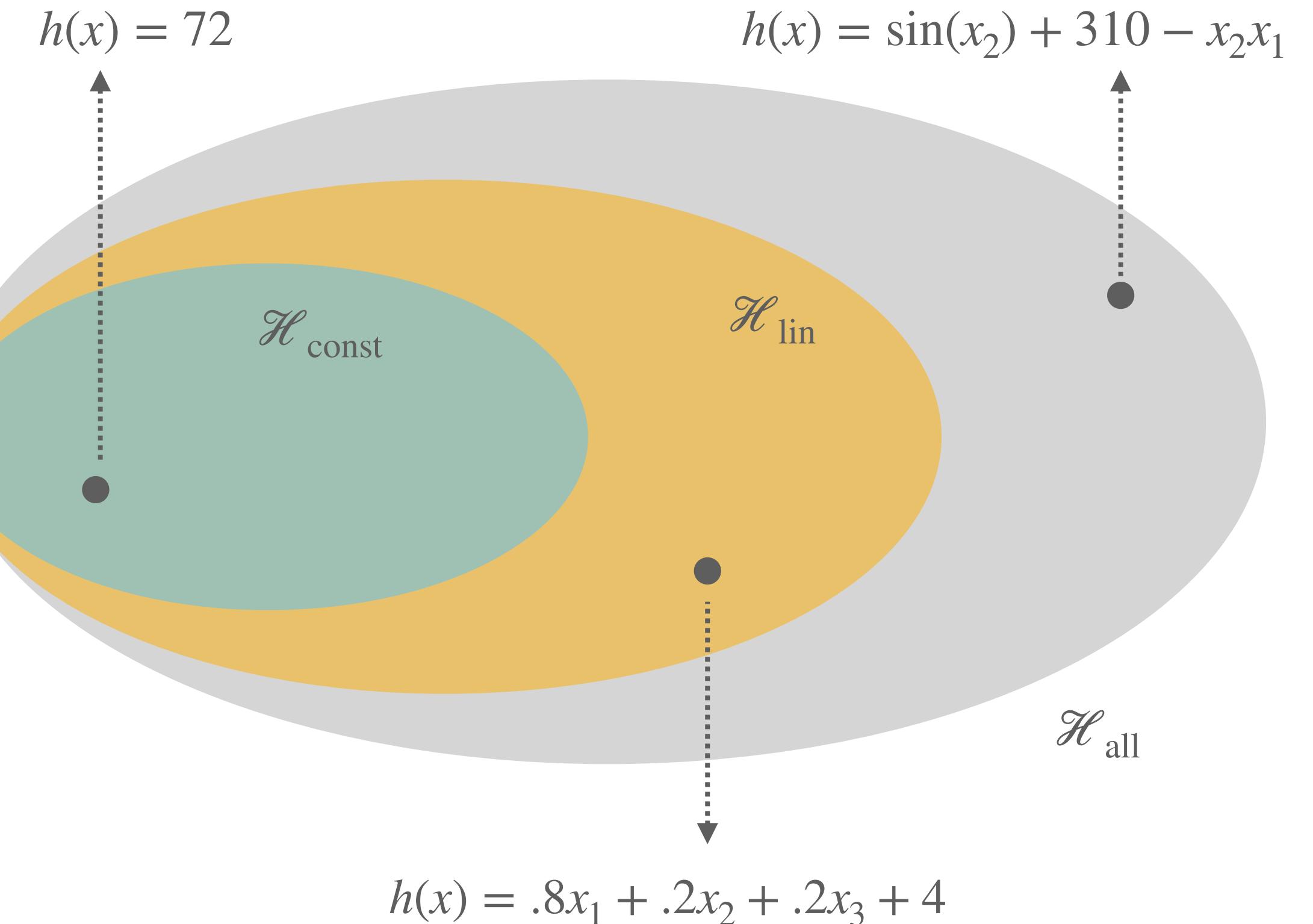
A hypothesis class is a set of functions $\mathcal{H} \subseteq \mathcal{A}^{\mathcal{X}}$ where we will search for h .



Hypothesis Class

Example

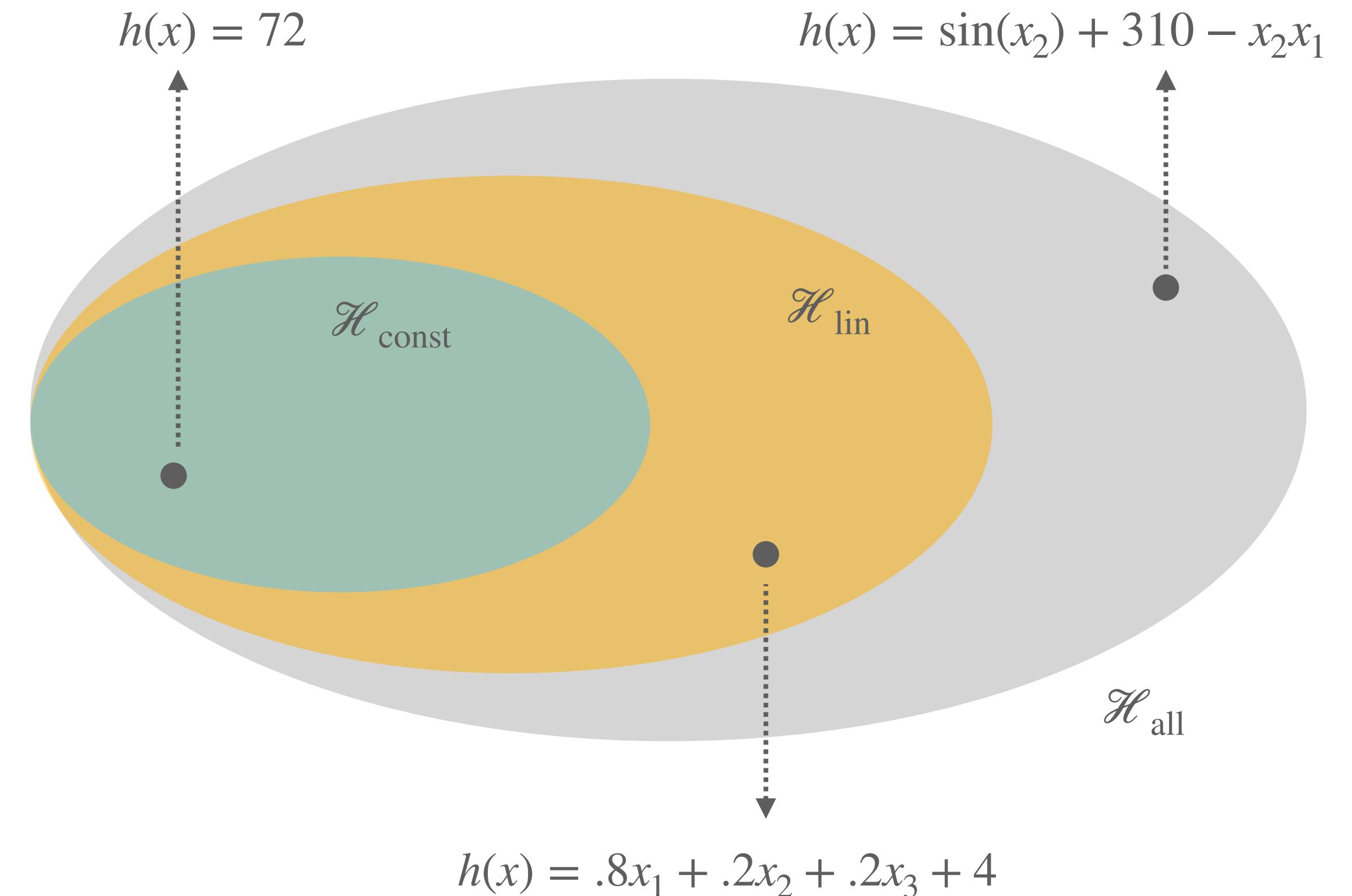
$$h: \mathcal{X} \rightarrow \{0, 1\}$$



Hypothesis Class

Example

$\mathcal{X} = \mathbb{R}^3$, with $x \in \mathcal{X}$ encoded as
 $x = (\text{midterm, hours studied, hours slept})$.

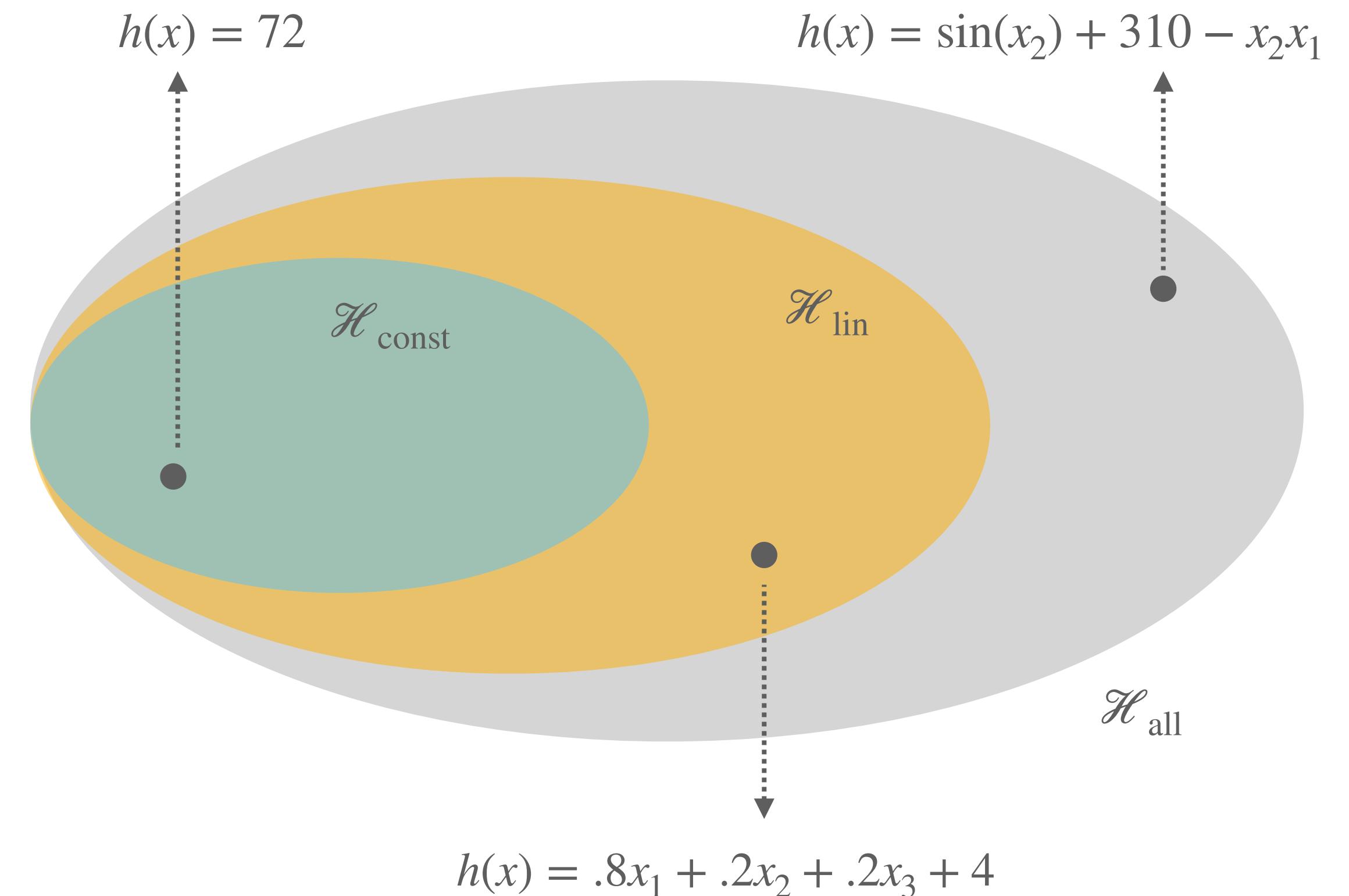


Hypothesis Class

Example

$\mathcal{X} = \mathbb{R}^3$, with $x \in \mathcal{X}$ encoded as $x = (\text{midterm, hours studied, hours slept})$.

$\mathcal{A} = \mathbb{R}$, where $a \in \mathcal{A}$ is final exam score.



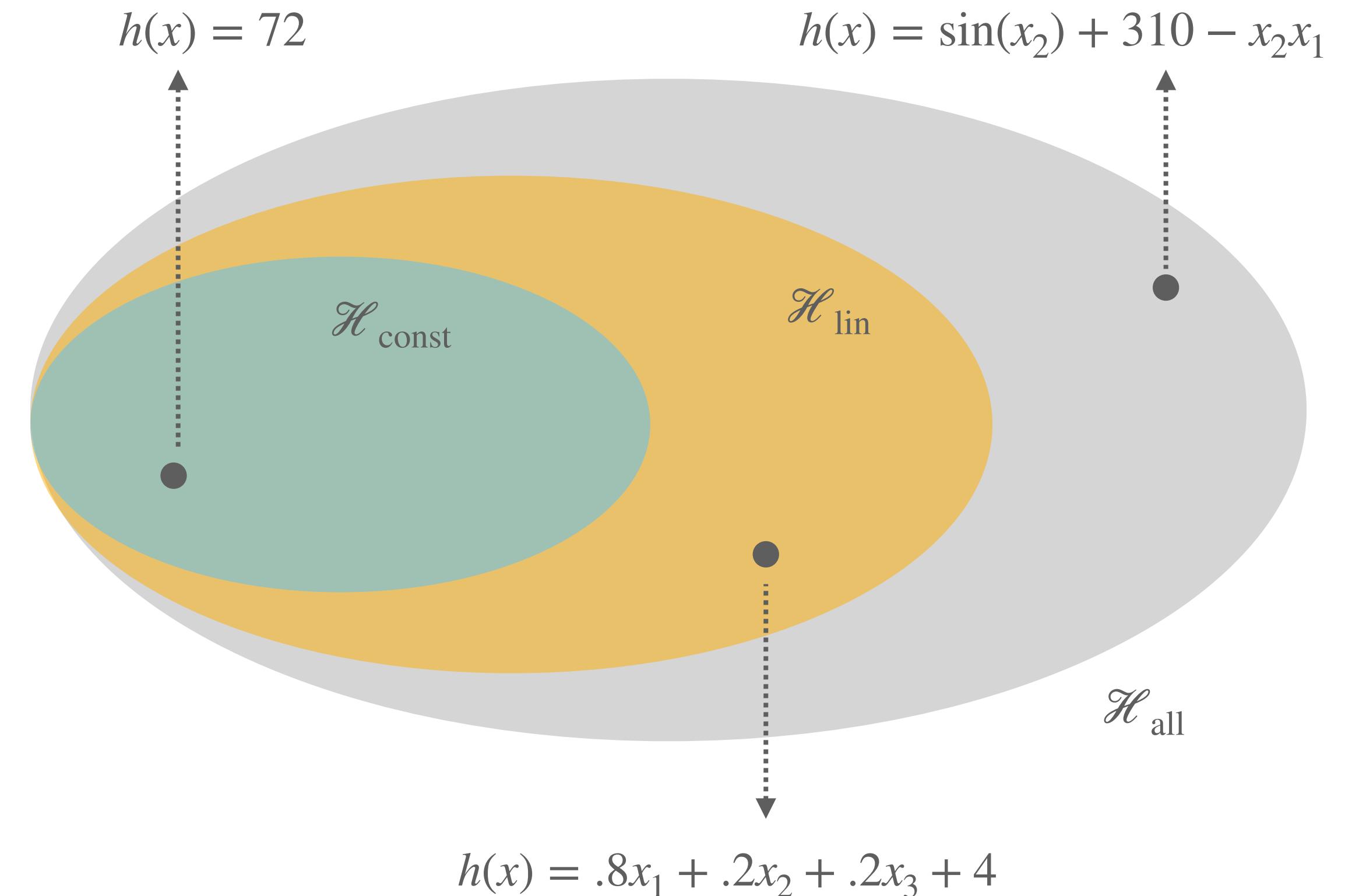
Hypothesis Class

Example

$\mathcal{X} = \mathbb{R}^3$, with $x \in \mathcal{X}$ encoded as $x = (\text{midterm, hours studied, hours slept})$.

$\mathcal{A} = \mathbb{R}$, where $a \in \mathcal{A}$ is final exam score.

Possible hypothesis classes:



Hypothesis Class

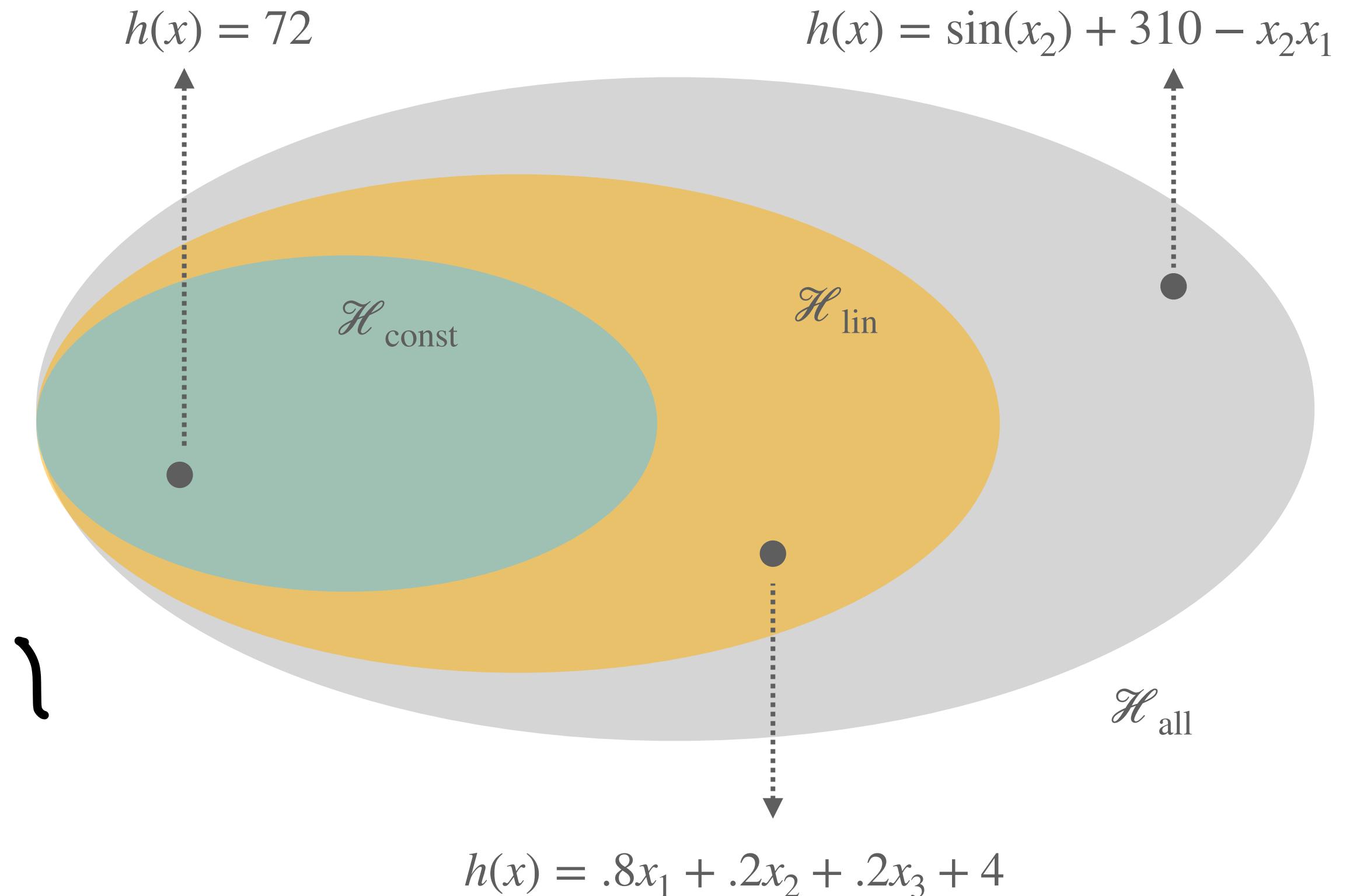
Example

$\mathcal{X} = \mathbb{R}^3$, with $x \in \mathcal{X}$ encoded as $x = (\text{midterm, hours studied, hours slept})$.

$\mathcal{A} = \mathbb{R}$, where $a \in \mathcal{A}$ is final exam score.

Possible hypothesis classes:

$$\mathcal{H}_{\text{const}} = \{x \mapsto b : b \in \mathbb{R}\} \quad h(x) = b$$



Hypothesis Class

Example

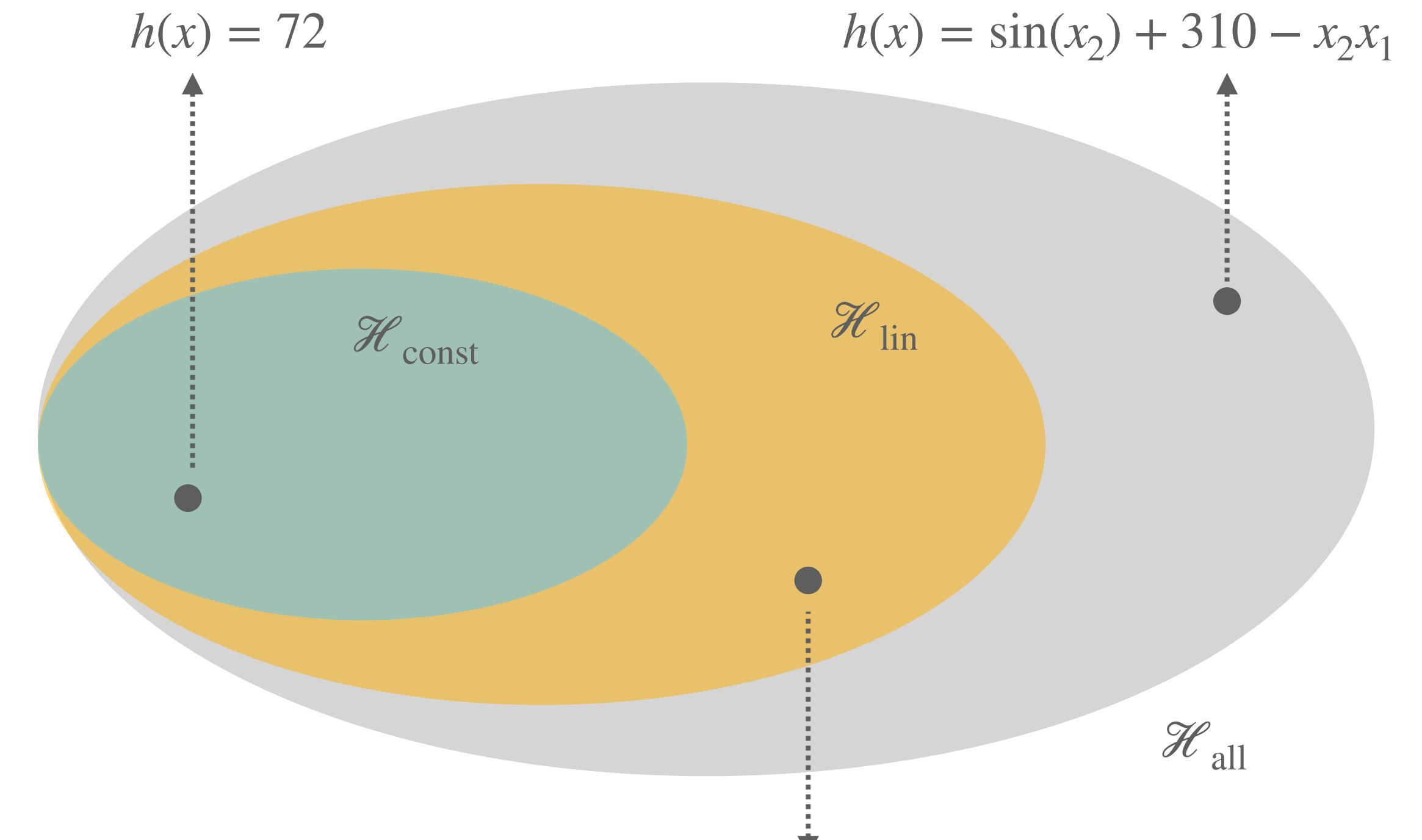
$\mathcal{X} = \mathbb{R}^3$, with $x \in \mathcal{X}$ encoded as
 $x = (\text{midterm, hours studied, hours slept})$.

$\mathcal{A} = \mathbb{R}$, where $a \in \mathcal{A}$ is final exam score.

Possible hypothesis classes:

$$\mathcal{H}_{\text{const}} = \{x \mapsto b : b \in \mathbb{R}\}$$

$$\mathcal{H}_{\text{lin}} = \{x \mapsto \underline{w^\top x + b} : w \in \mathbb{R}^3, b \in \mathbb{R}\}$$



Hypothesis Class

Example

$\mathcal{X} = \mathbb{R}^3$, with $x \in \mathcal{X}$ encoded as
 $x = (\text{midterm, hours studied, hours slept})$.

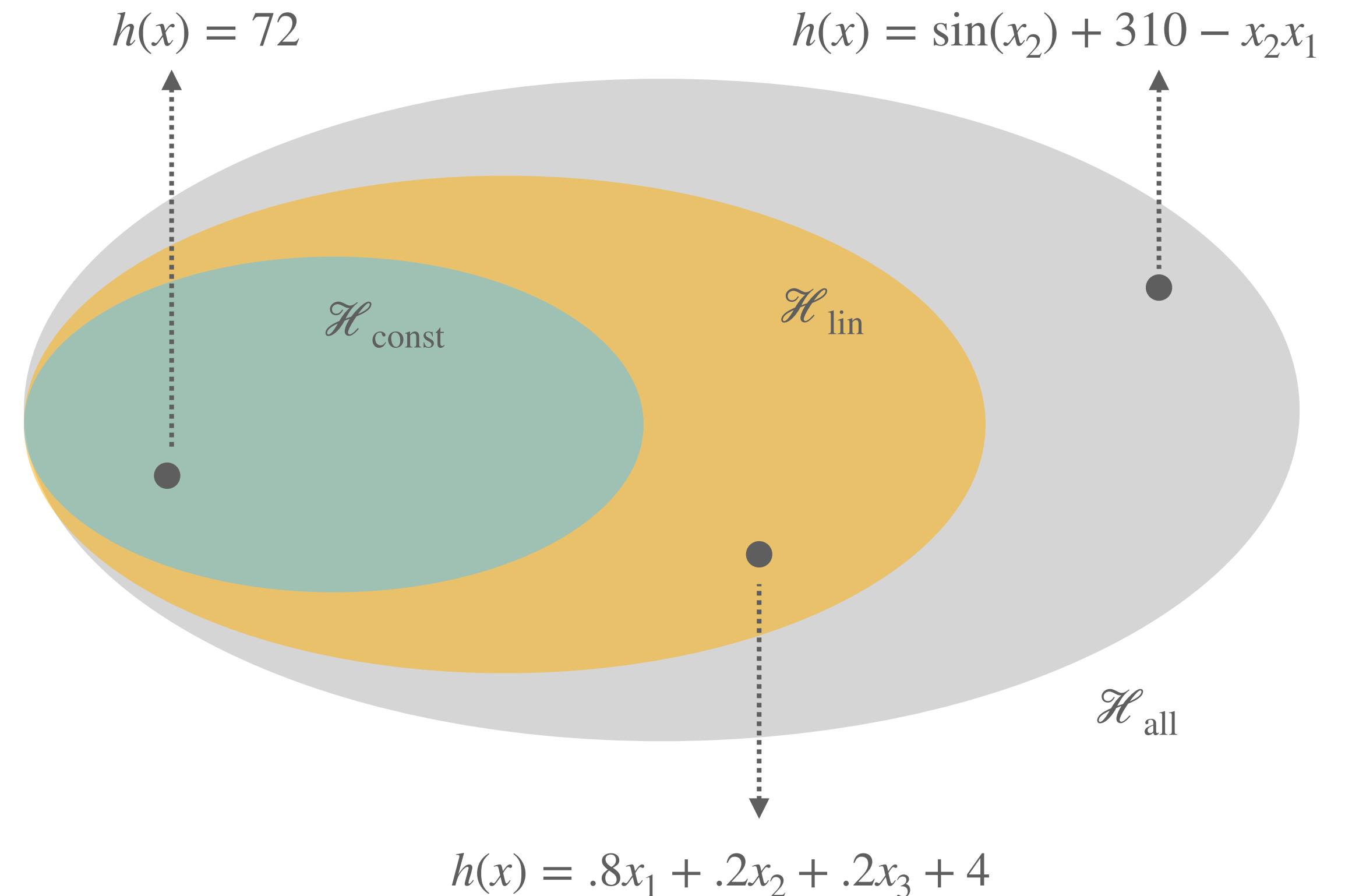
$\mathcal{A} = \mathbb{R}$, where $a \in \mathcal{A}$ is final exam score.

Possible hypothesis classes:

$$\mathcal{H}_{\text{const}} = \{x \mapsto b : b \in \mathbb{R}\}$$

$$\mathcal{H}_{\text{lin}} = \{x \mapsto w^\top x + b : w \in \mathbb{R}^3, b \in \mathbb{R}\}$$

$$\mathcal{H}_{\text{all}} = \{\mathbb{R}^3 \mapsto \mathbb{R}\}$$



Empirical Risk Minimization

Example: $\mathcal{H}_{\text{const}}$

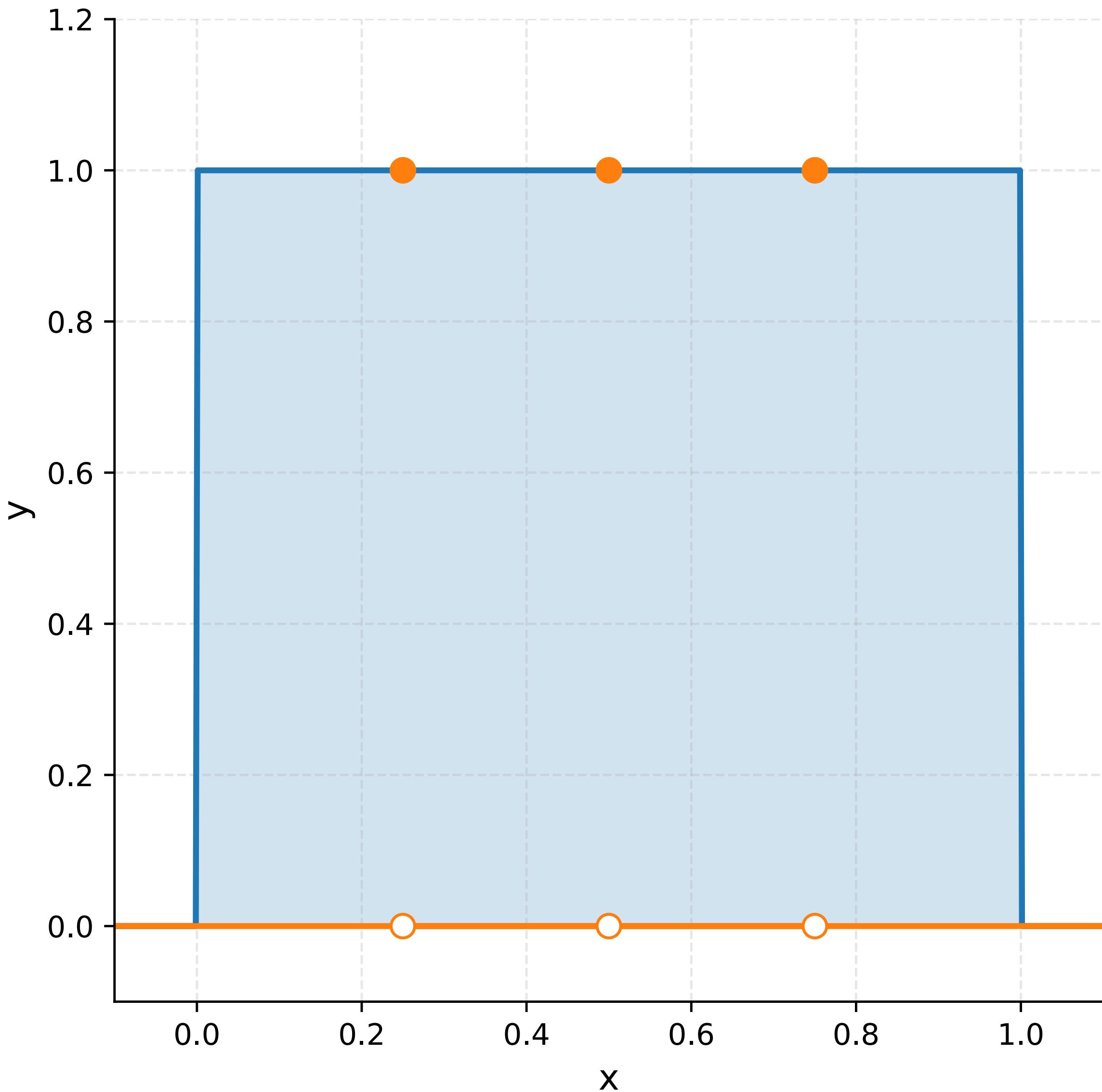
$P_{\mathcal{X}} = \text{Unif}([0,1])$ and $Y = 1$ always.

$$D_n = \{(0.25, 1), (0.5, 1), (0.75, 1)\}.$$

$$\hat{h}(x) = \begin{cases} 1 & \text{if } x \in \{0.25, 0.5, 0.75\} \\ 0 & \text{otherwise} \end{cases}$$

ERM over $\mathcal{H}_{\text{const}} = \{x \mapsto b : b \in \mathbb{R}\}$:

$$\hat{h}(x) = 1$$



Hypothesis Class

Definition

A hypothesis class is a set of functions $\mathcal{H} \subseteq \mathcal{A}^{\mathcal{X}}$ where we will search for h .

Fixed *before* the learning process.

Encodes assumptions about the relationship of x to y .

Should be easy to work with (i.e. we have efficient algorithms to search over \mathcal{H}).

Risk Minimization

With a hypothesis class

The empirical risk minimizer (ERM) in \mathcal{H} is a function \hat{h} satisfying

$$\hat{h} \in \arg \min_{h \in \mathcal{H}} \hat{R}_n(h).$$

The risk minimizer in \mathcal{H} is a function \hat{h} satisfying

$$h_{\mathcal{H}}^* \in \arg \min_{h \in \mathcal{H}} \boxed{R(h)} \text{ true risk}$$

The Bayes hypothesis h^* is a function with *minimal risk* among all functions

$$h^* \in \arg \min_h R(h)$$

Outline

Course Overview and Logistics

Introduction to Machine Learning

Statistical Learning Setup

Statistical Learning: Bayes Risk

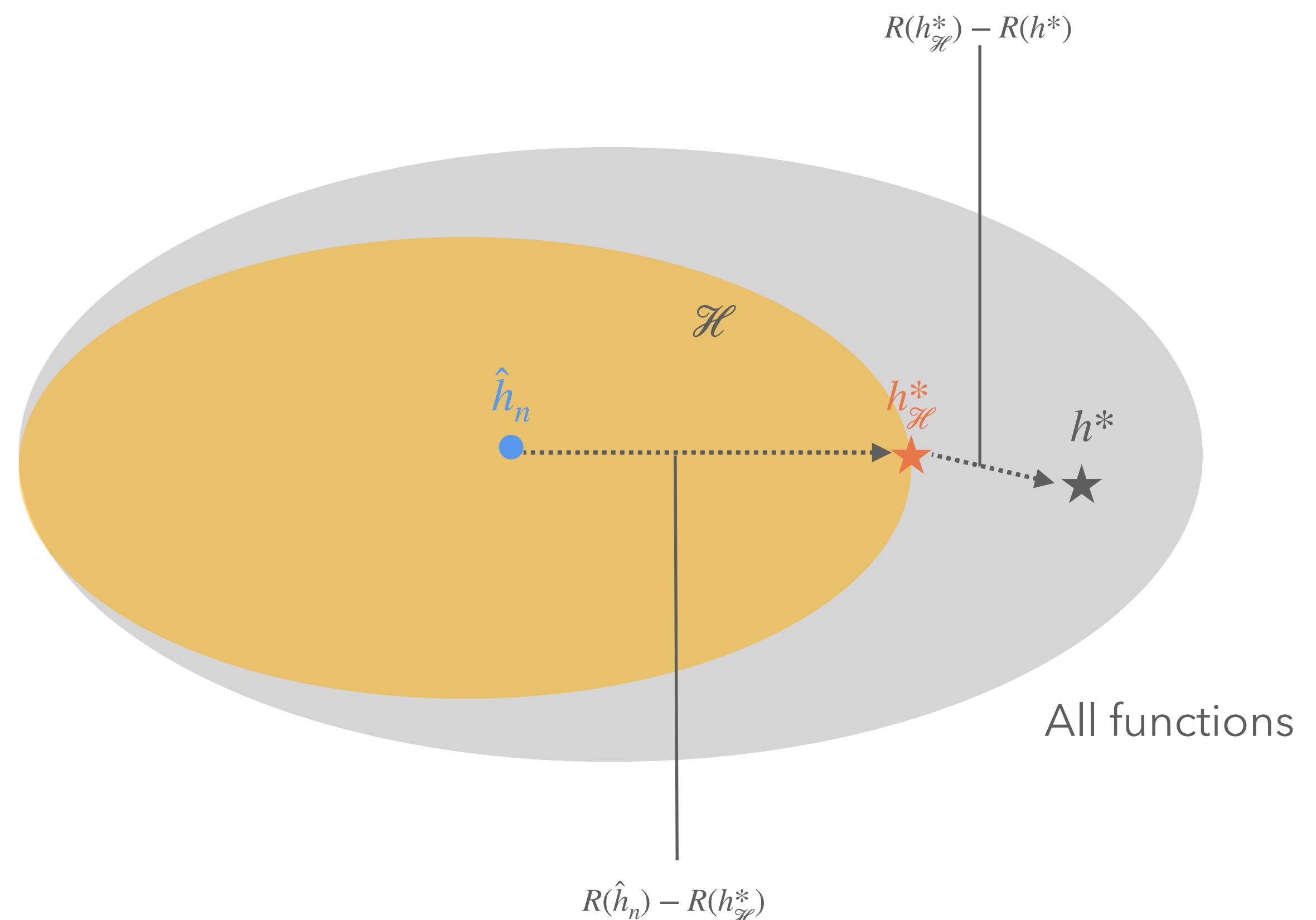
Statistical Learning: Empirical Risk and ERM

Statistical Learning: Hypothesis Class

Excess Risk Decomposition and Three Types of Error

Excess Risk

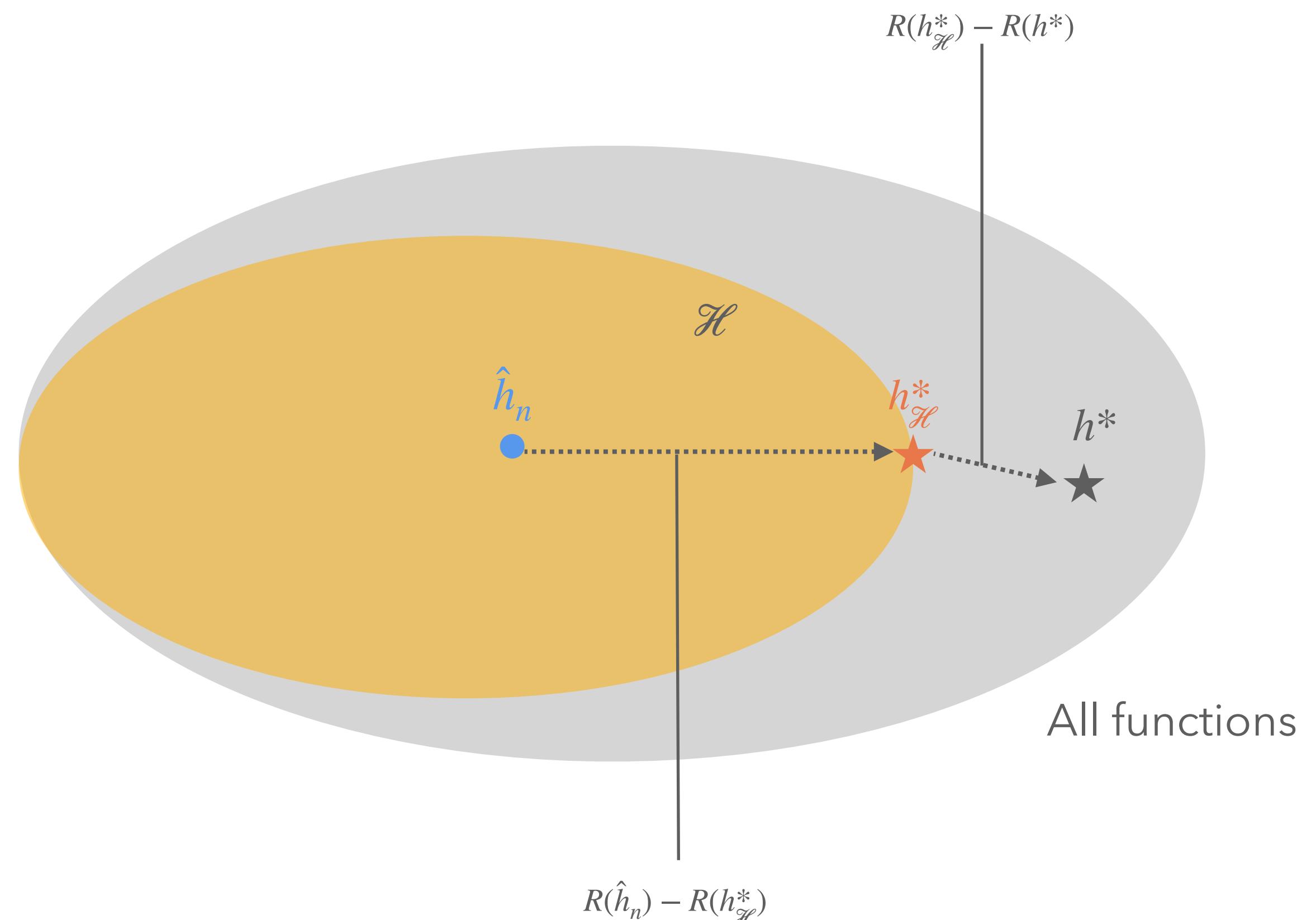
Definition



Excess Risk

Definition

$$h^* \in \operatorname{argmin}_h \underbrace{\mathbb{E}_{(x,y) \sim P_{\mathcal{X} \times \mathcal{Y}}} [\ell(h(x), y)]}_{R(h)}$$

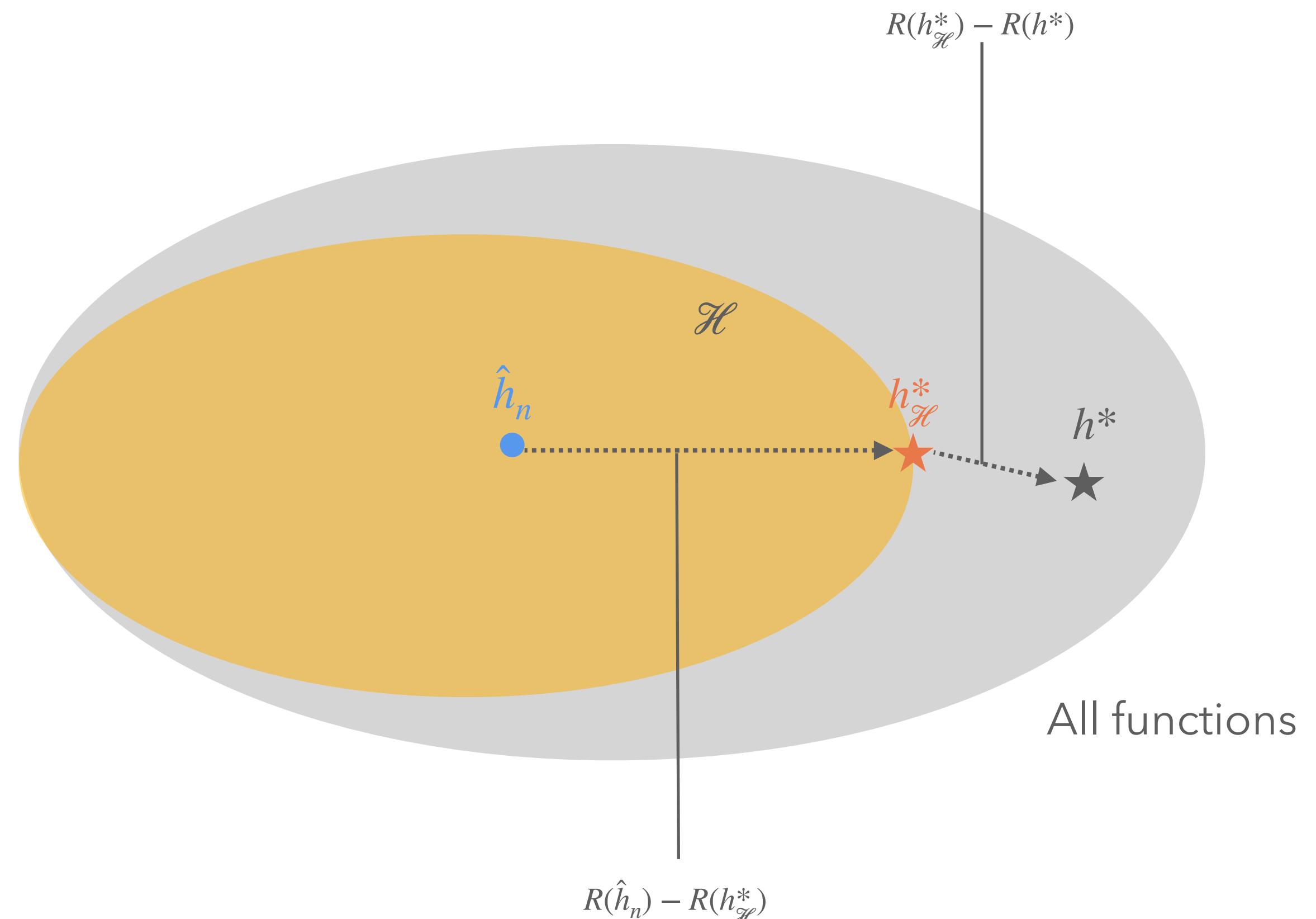


Excess Risk

Definition

$$h^* \in \operatorname{argmin}_h \underbrace{\mathbb{E}_{(x,y) \sim P_{\mathcal{X} \times \mathcal{Y}}} [\ell(h(x), y)]}_{R(h)}$$

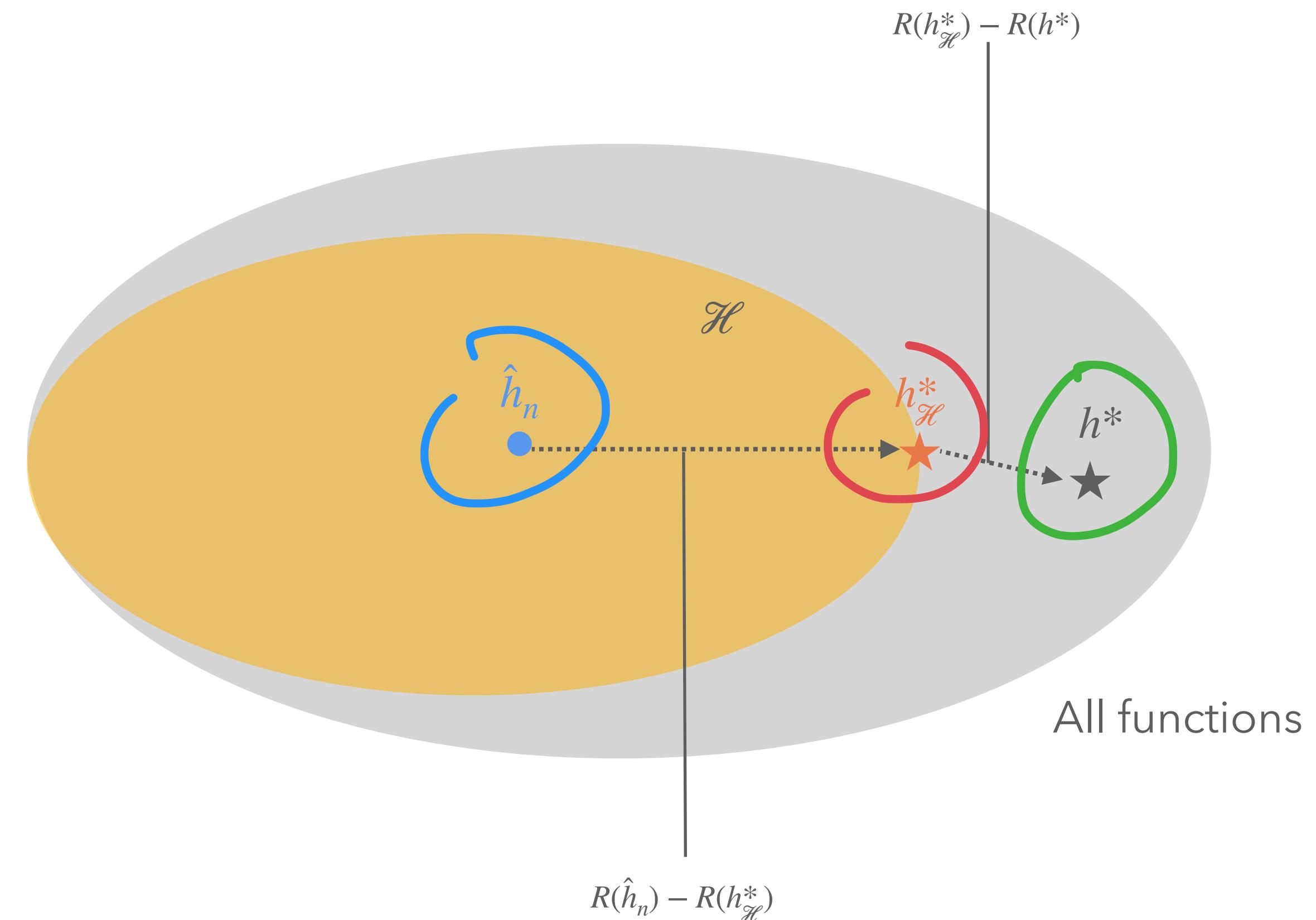
$$h_{\mathcal{H}}^* \in \operatorname{argmin}_{h \in \mathcal{H}} \underbrace{\mathbb{E}_{(x,y) \sim P_{\mathcal{X} \times \mathcal{Y}}} [\ell(h(x), y)]}_{R(h)}$$



Excess Risk

Definition

$$\begin{aligned}
 h^* &\in \operatorname{argmin}_h \mathbb{E}_{(x,y) \sim P_{\mathcal{X} \times \mathcal{Y}}} [\ell(h(x), y)] \\
 h_{\mathcal{H}}^* &\in \operatorname{argmin}_{h \in \mathcal{H}} \mathbb{E}_{(x,y) \sim P_{\mathcal{X} \times \mathcal{Y}}} [\ell(h(x), y)] \\
 \hat{h}_n &\in \operatorname{argmin}_{h \in \mathcal{H}} \underbrace{\frac{1}{n} \sum_{i=1}^n \ell(h(x^{(i)}), y^{(i)})}_{\hat{R}_n(h)}
 \end{aligned}$$



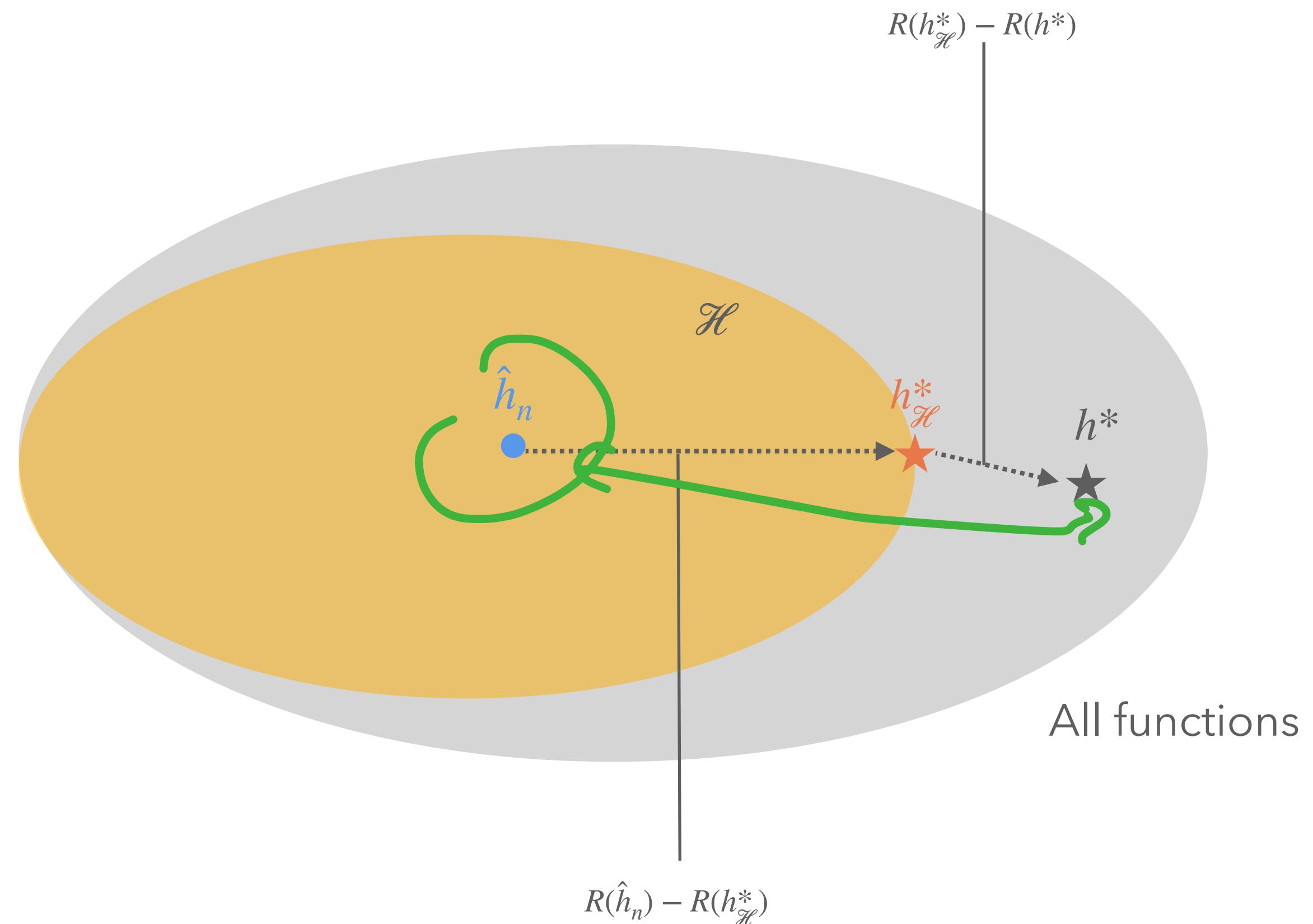
Excess Risk

Definition

$$h^* \in \operatorname{argmin}_h \underbrace{\mathbb{E}_{(x,y) \sim P_{\mathcal{X} \times \mathcal{Y}}} [\ell(h(x), y)]}_{R(h)}$$

$$h_{\mathcal{H}}^* \in \operatorname{argmin}_{h \in \mathcal{H}} \underbrace{\mathbb{E}_{(x,y) \sim P_{\mathcal{X} \times \mathcal{Y}}} [\ell(h(x), y)]}_{R(h)}$$

$$\hat{h}_n \in \operatorname{argmin}_{h \in \mathcal{H}} \underbrace{\frac{1}{n} \sum_{i=1}^n \ell(h(x^{(i)}), y^{(i)})}_{\hat{R}_n(h)}$$

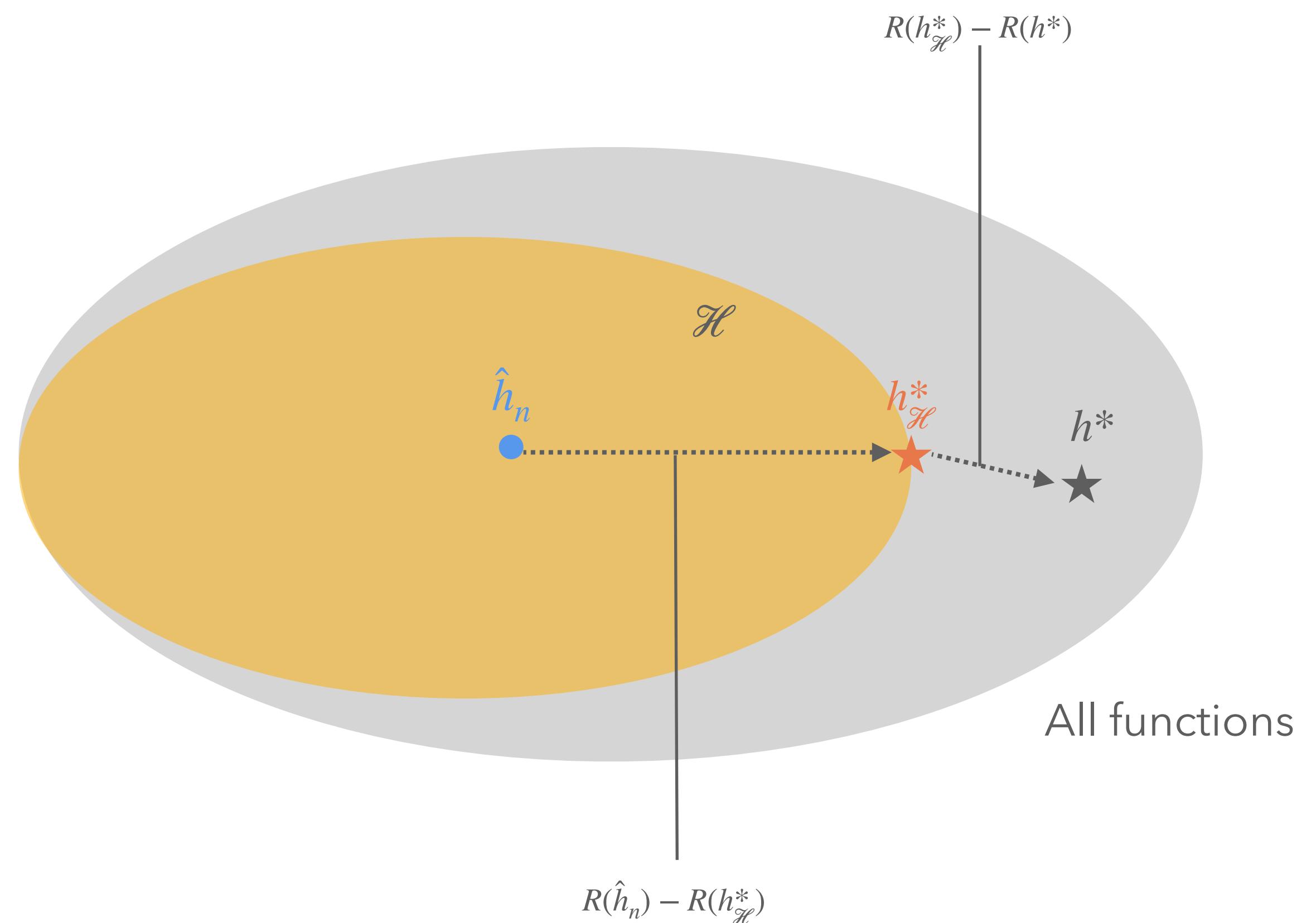


The excess risk of h is how far h is from h^* :

$$R(h) - R(h^*).$$

Excess Risk

Decomposition

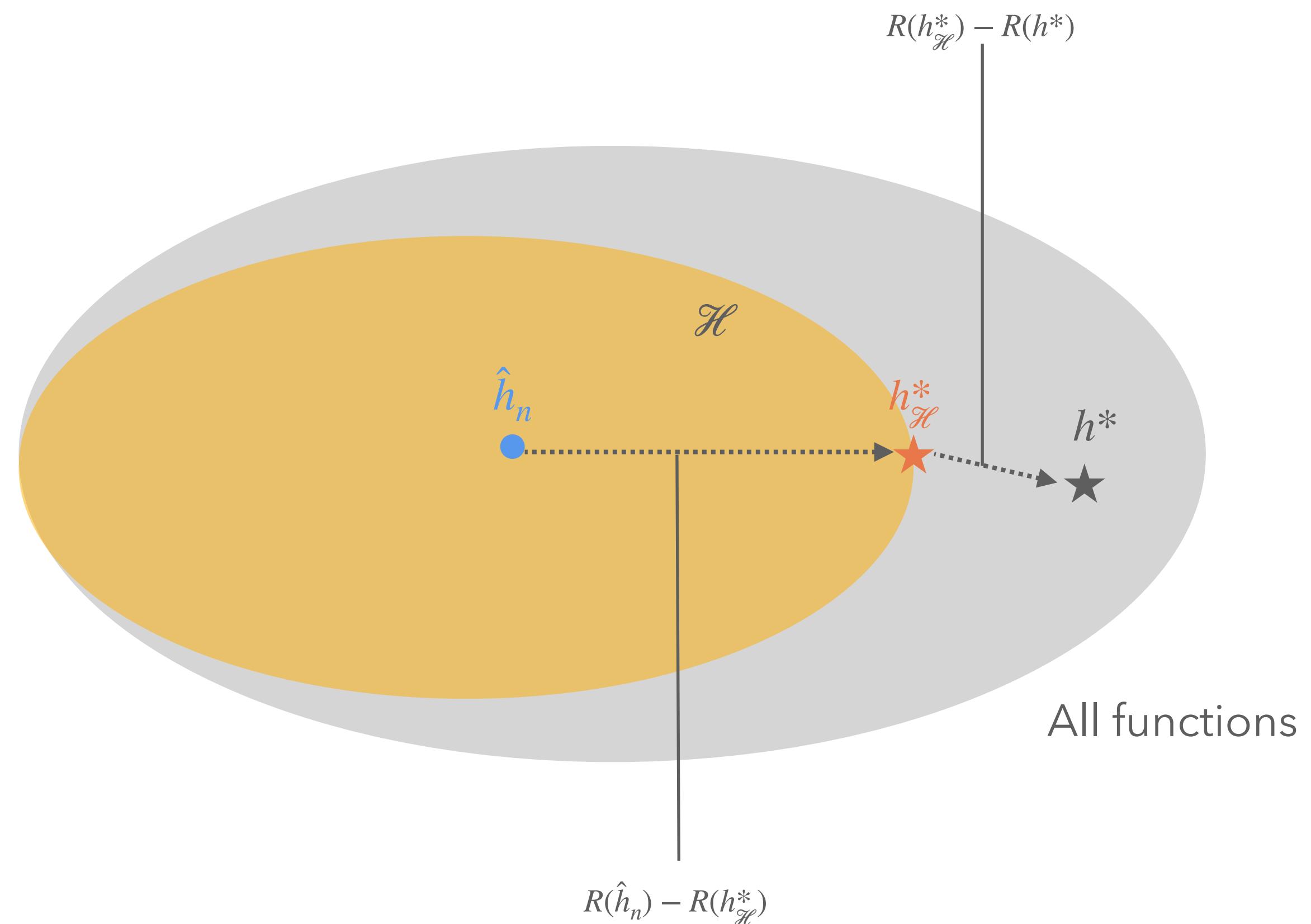


Excess Risk

Decomposition

The excess risk of h is how far h is from h^* :

$$R(h) - R(h^*).$$



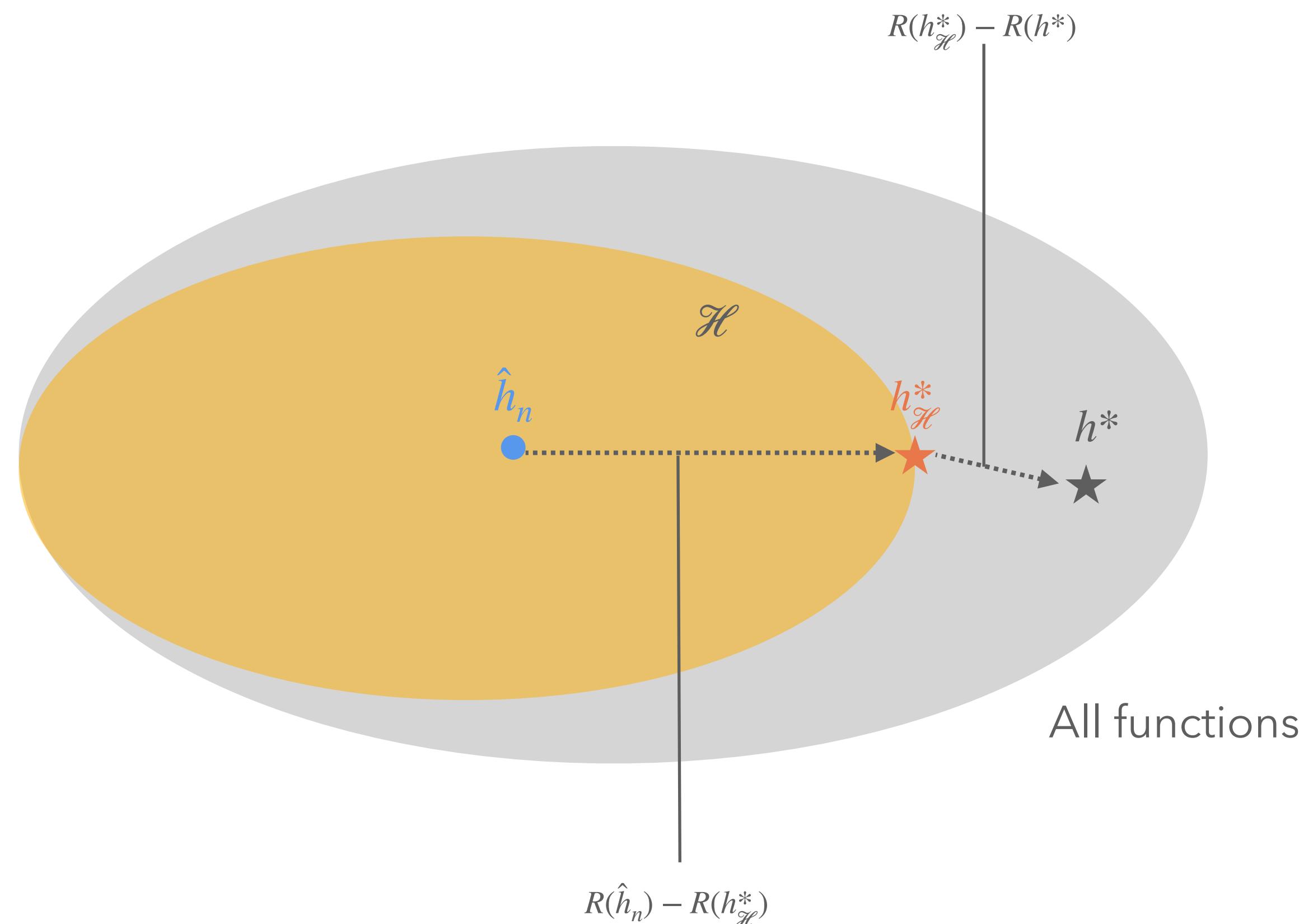
Excess Risk

Decomposition

The excess risk of h is how far h is from h^* :

$$R(h) - R(h^*).$$

Excess risk of ERM \hat{h}_n :



Excess Risk

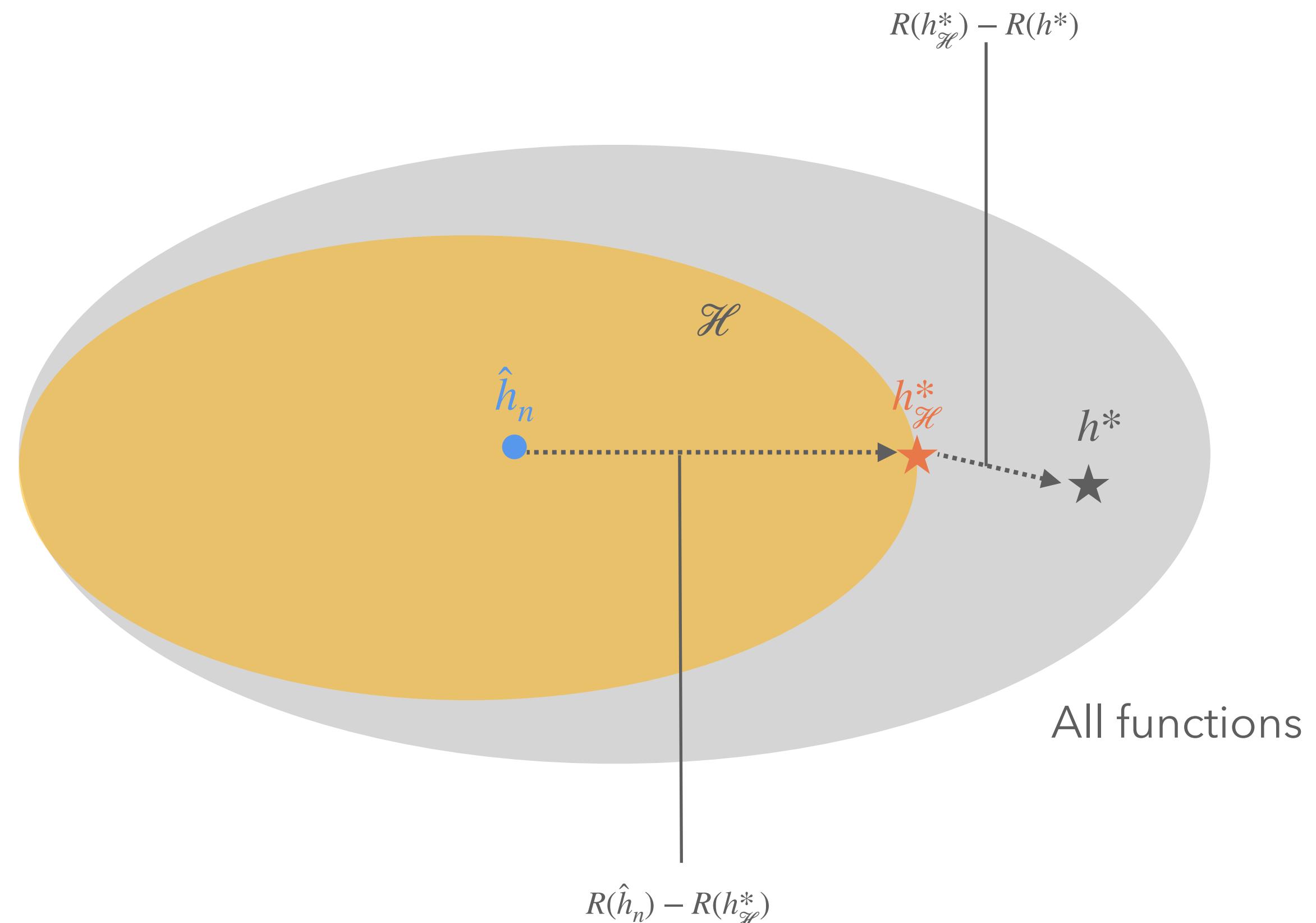
Decomposition

The excess risk of h is how far h is from h^* :

$$R(h) - R(h^*).$$

Excess risk of ERM \hat{h}_n :

$$R(\hat{h}_n) - R(h^*) = \underbrace{R(\hat{h}_n) - R(h_{\mathcal{H}}^*)}_{\text{est. error}} + \underbrace{R(h_{\mathcal{H}}^*) - R(h^*)}_{\text{approx. error}}$$



Excess Risk

Decomposition

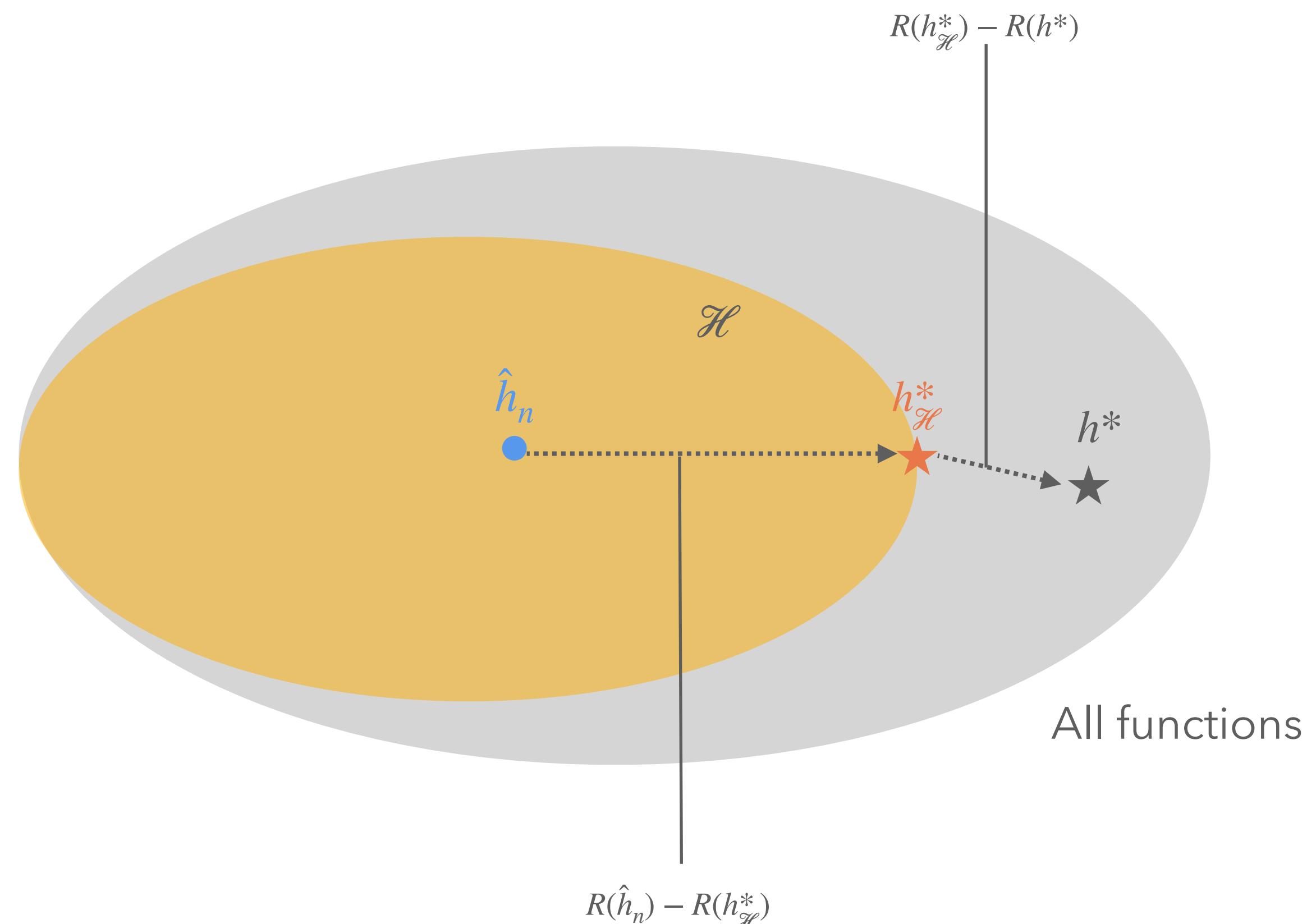
The excess risk of h is how far h is from h^* :

$$R(h) - R(h^*).$$

Excess risk of ERM \hat{h}_n :

$$R(\hat{h}_n) - R(h^*) = \underbrace{R(\hat{h}_n) - R(h_{\mathcal{H}}^*)}_{\text{est. error}} + \underbrace{R(h_{\mathcal{H}}^*) - R(h^*)}_{\text{approx. error}}$$

Estimation error is from using finite training as a proxy for risk (a generalization issue).



Excess Risk

Decomposition

The excess risk of h is how far h is from h^* :

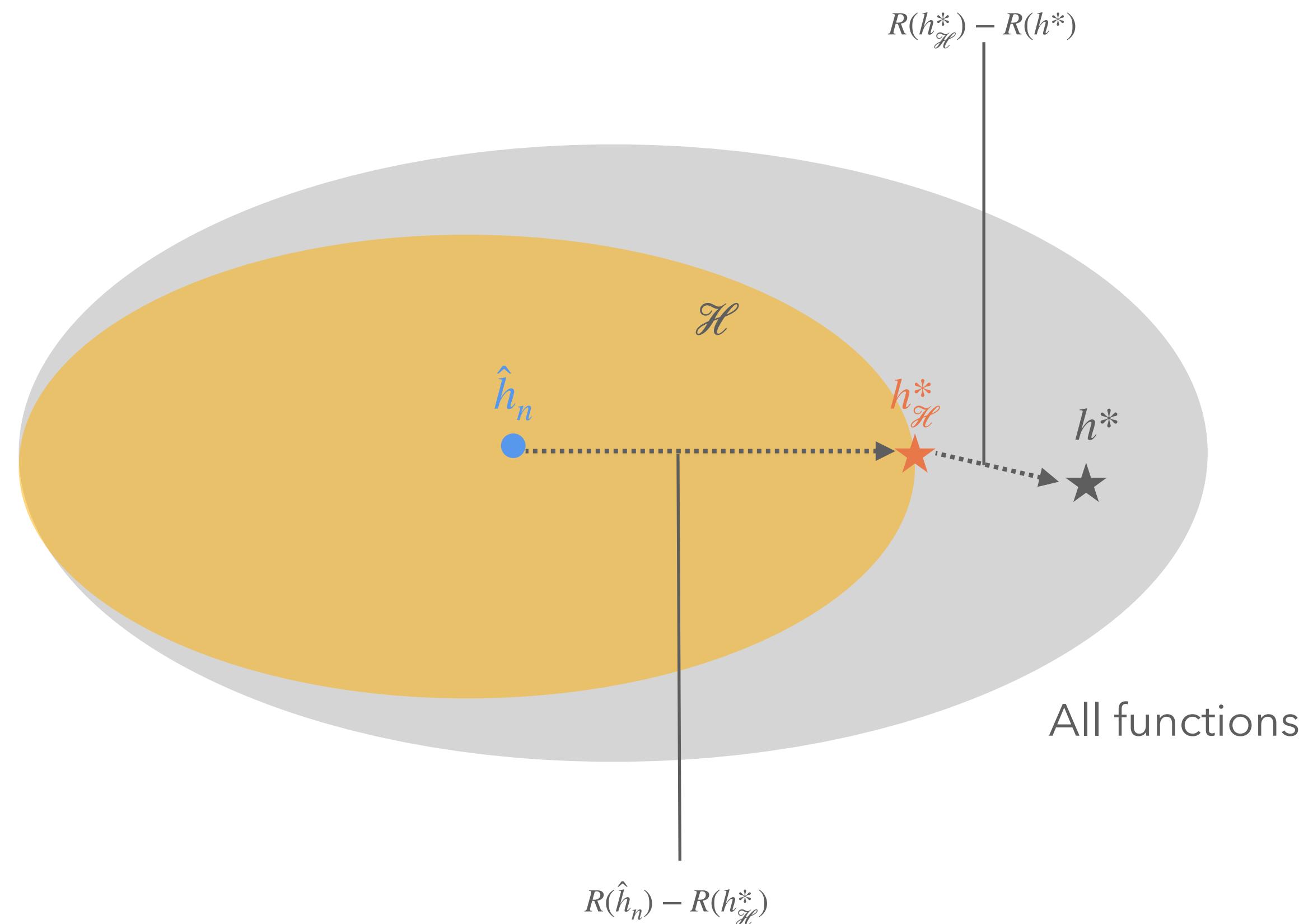
$$R(h) - R(h^*).$$

Excess risk of ERM \hat{h}_n :

$$R(\hat{h}_n) - R(h^*) = \underbrace{R(\hat{h}_n) - R(h_{\mathcal{H}}^*)}_{\text{est. error}} + \underbrace{R(h_{\mathcal{H}}^*) - R(h^*)}_{\text{approx. error}}$$

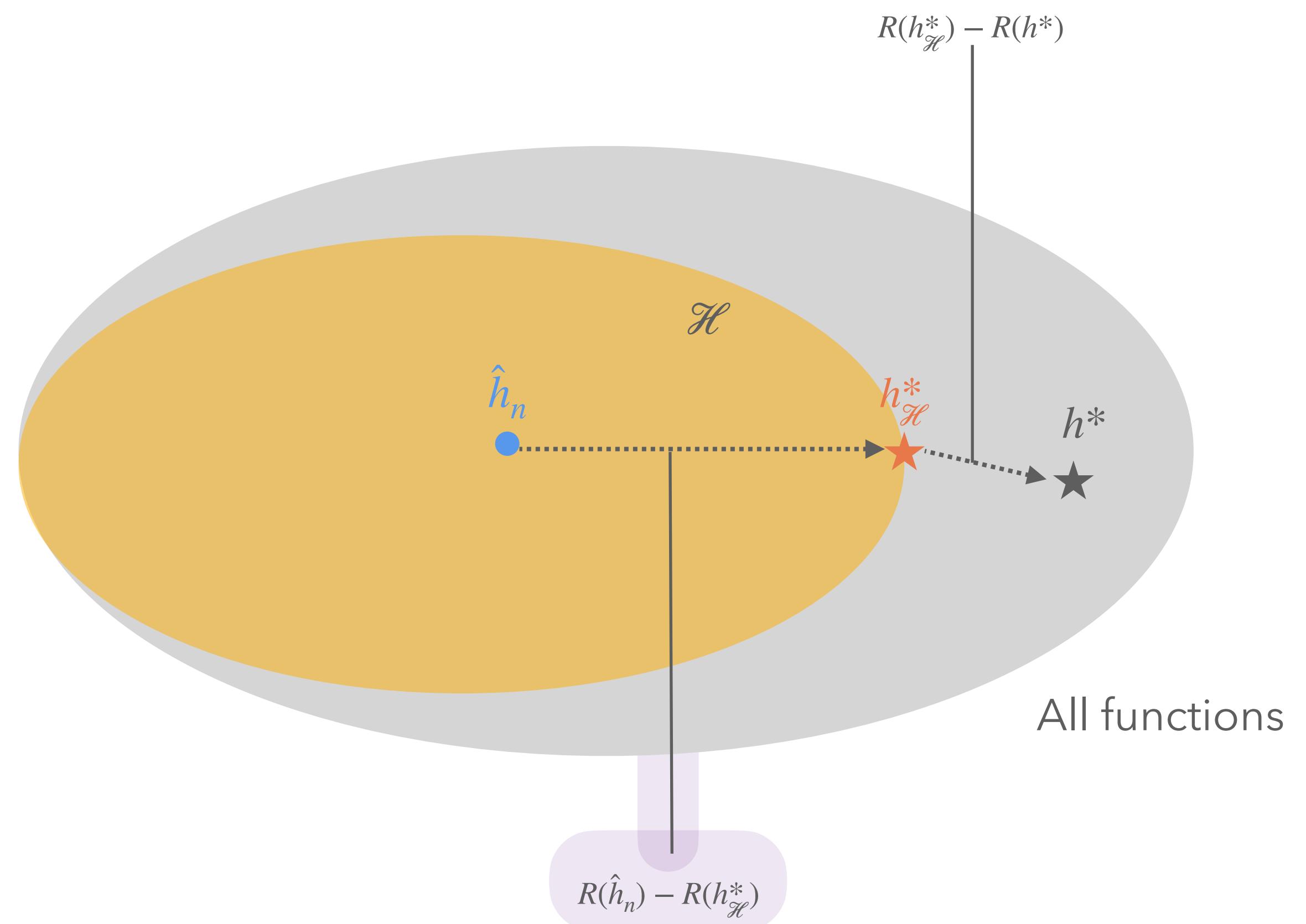
Estimation error is from using finite training as a proxy for risk (a generalization issue).

Approximation error is from our choice of class \mathcal{H} (a representation issue).



Estimation Error

Details

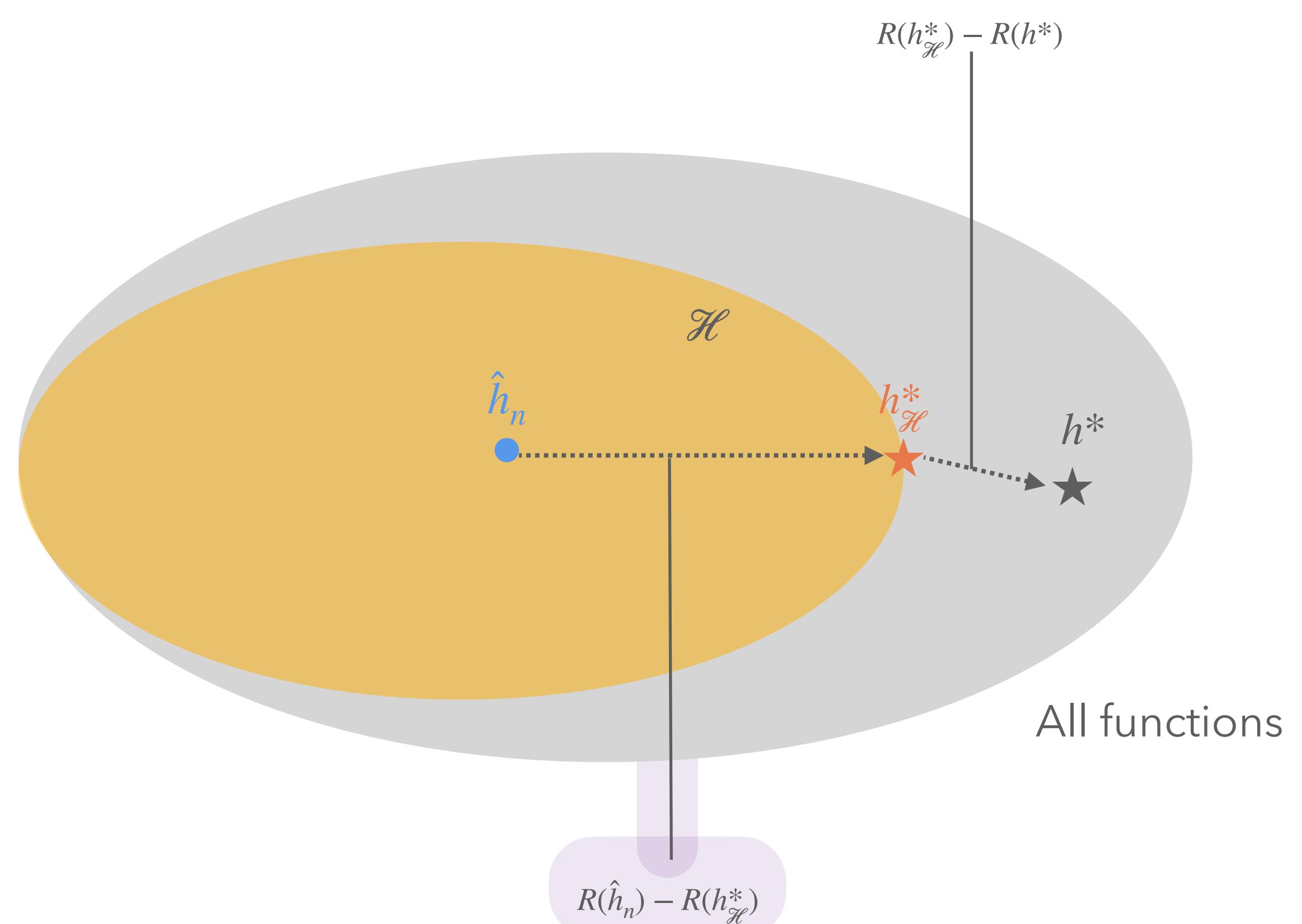


Estimation Error

Details

The estimation error ($R(\hat{h}_n) - R(h^*_{\mathcal{H}})$) is the error incurred by using a finite sample D_n to obtain \hat{h}_n .

Function of random variables

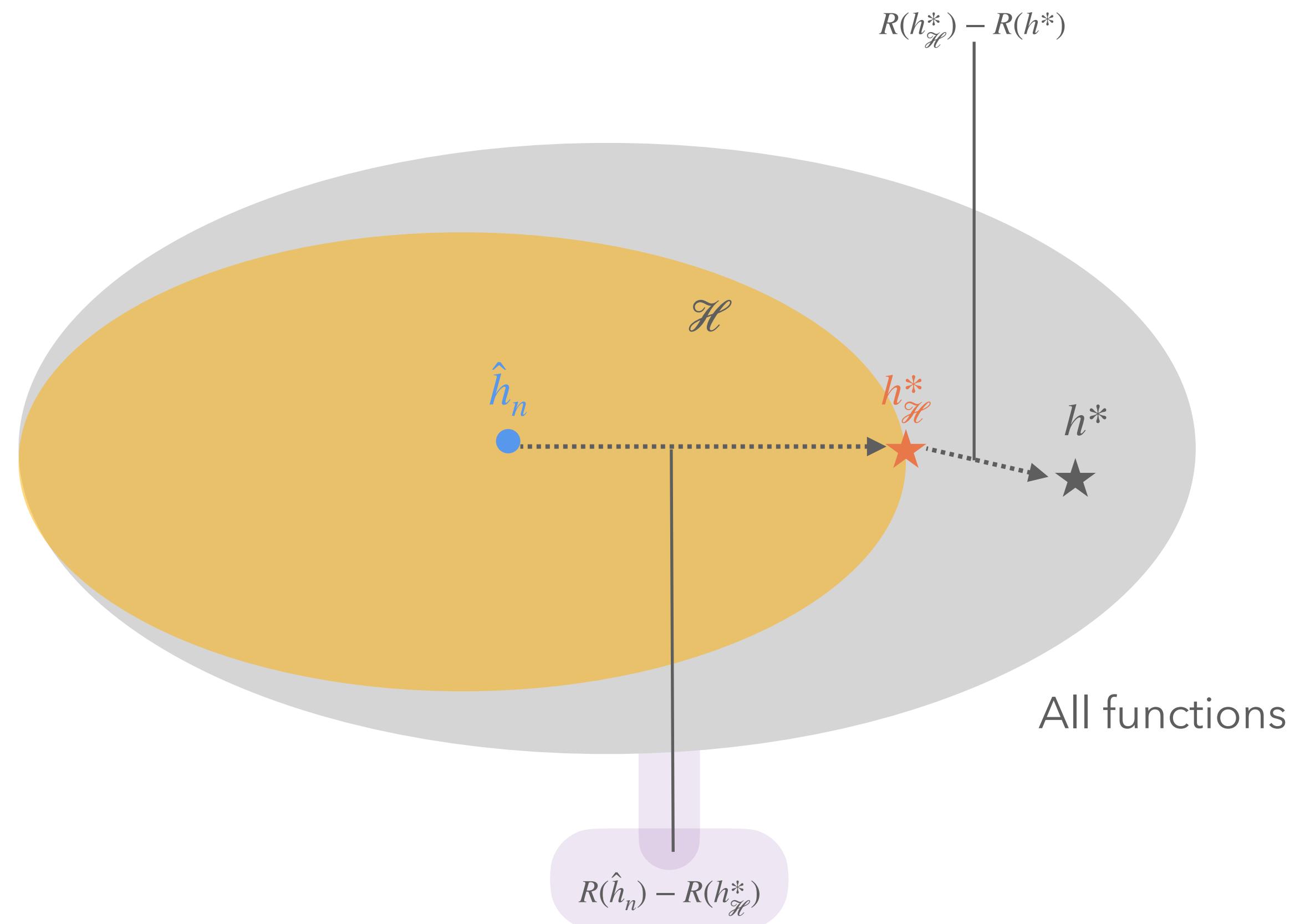


Estimation Error

Details

The estimation error $R(\hat{h}_n) - R(h^*_{\mathcal{H}})$ is the error incurred by using a finite sample D_n to obtain \hat{h}_n .

This is a random variable (why)?



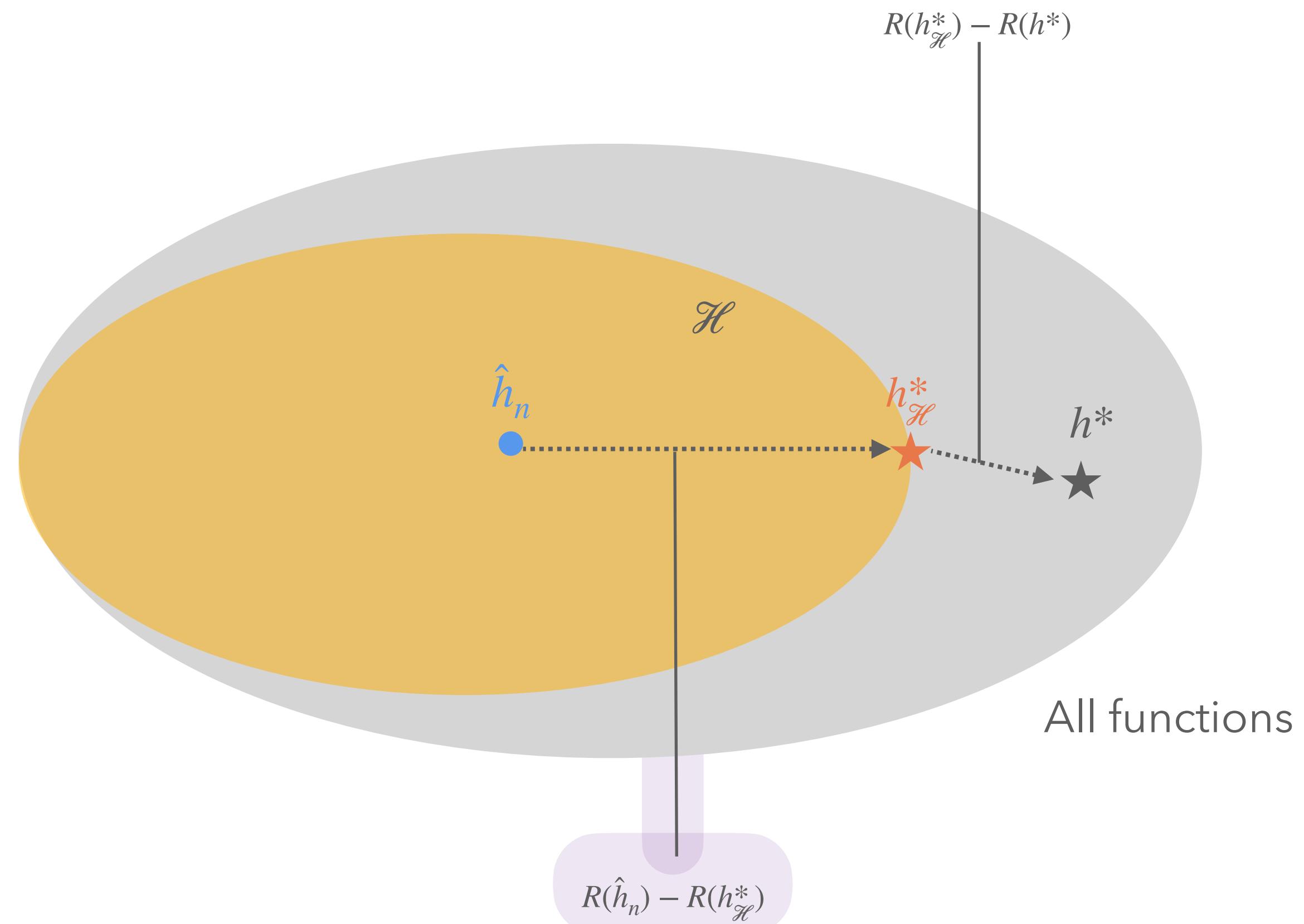
Estimation Error

Details

The estimation error $R(\hat{h}_n) - R(h^*_{\mathcal{H}})$ is the error incurred by using a finite sample D_n to obtain \hat{h}_n .

This is a random variable (why)?

Typically, when $n \rightarrow \infty$ (infinite training data), the estimation error goes to zero.



Estimation Error

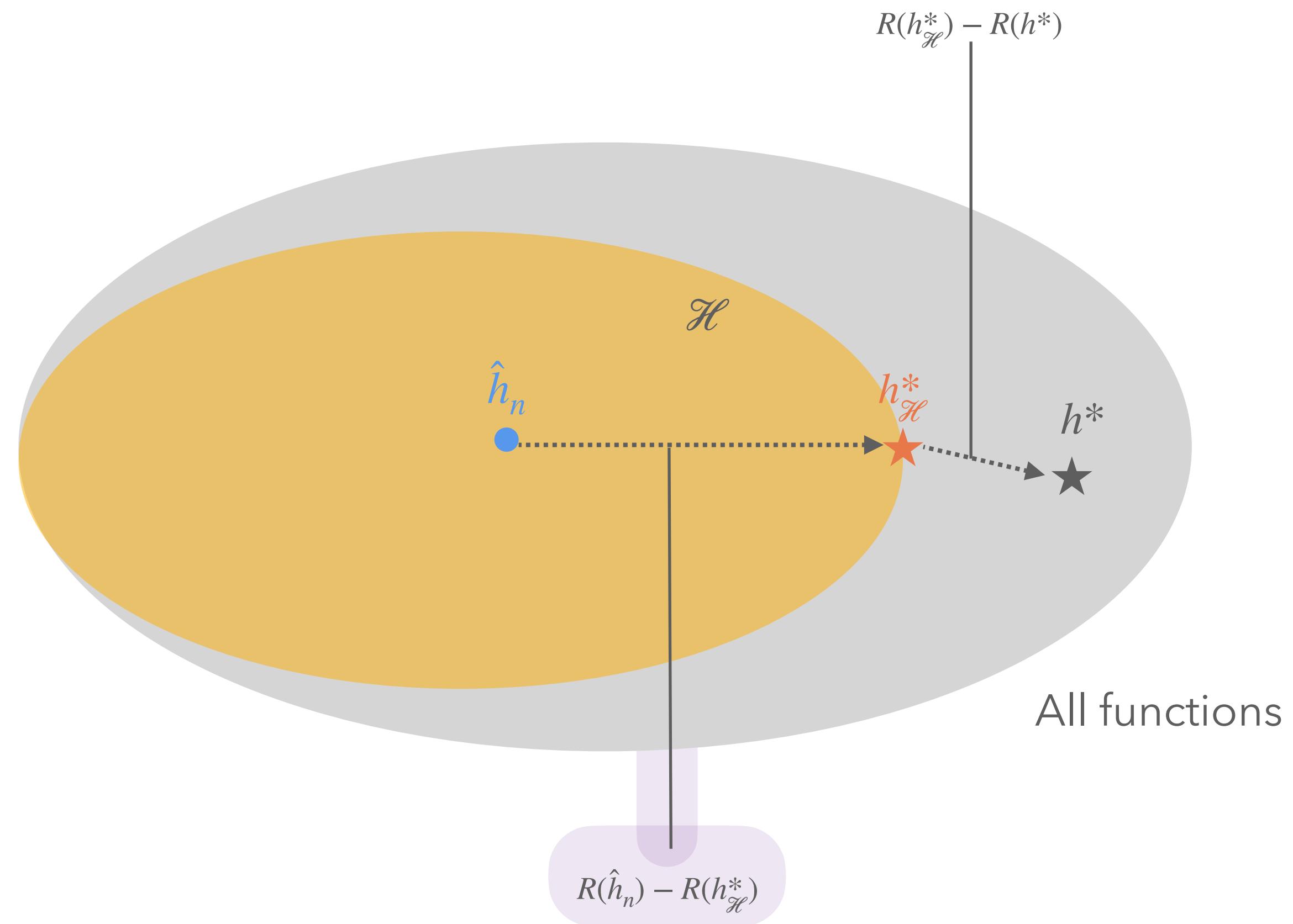
Details

The estimation error $R(\hat{h}_n) - R(h^*_{\mathcal{H}})$ is the error incurred by using a finite sample D_n to obtain \hat{h}_n .

This is a random variable (why)?

Typically, when $n \rightarrow \infty$ (infinite training data), the estimation error goes to zero.

We expect that estimation error increases with larger \mathcal{H} .



Estimation Error

Details

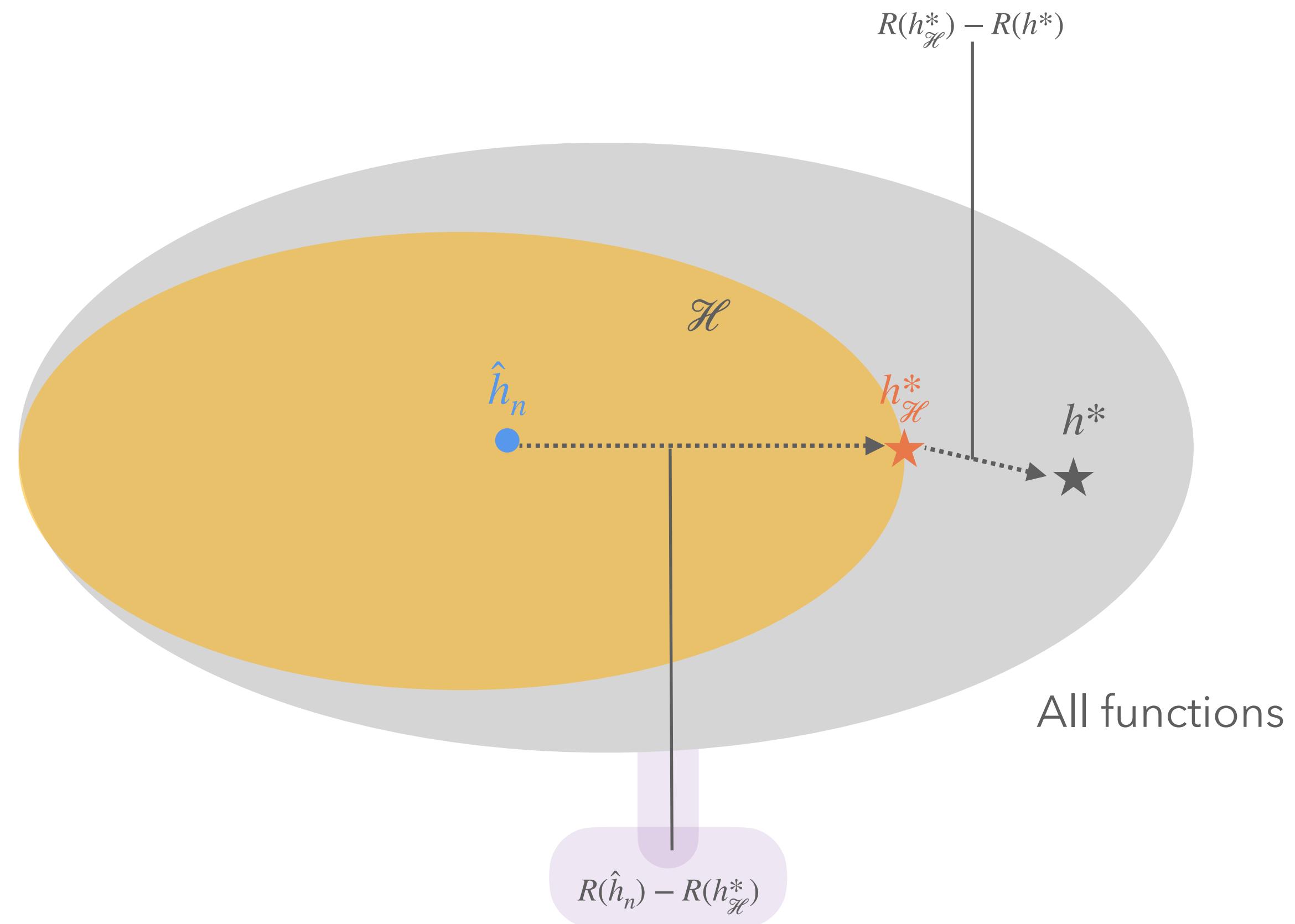
The estimation error $R(\hat{h}_n) - R(h^*_{\mathcal{H}})$ is the error incurred by using a finite sample D_n to obtain \hat{h}_n .

This is a random variable (why)?

Typically, when $n \rightarrow \infty$ (infinite training data), the estimation error goes to zero.

We expect that estimation error increases with larger \mathcal{H} .

Very rough intuition: a “variance” term.



Estimation Error

Details

The estimation error $R(\hat{h}_n) - R(h^*_{\mathcal{H}})$ is the error incurred by using a finite sample D_n to obtain \hat{h}_n .

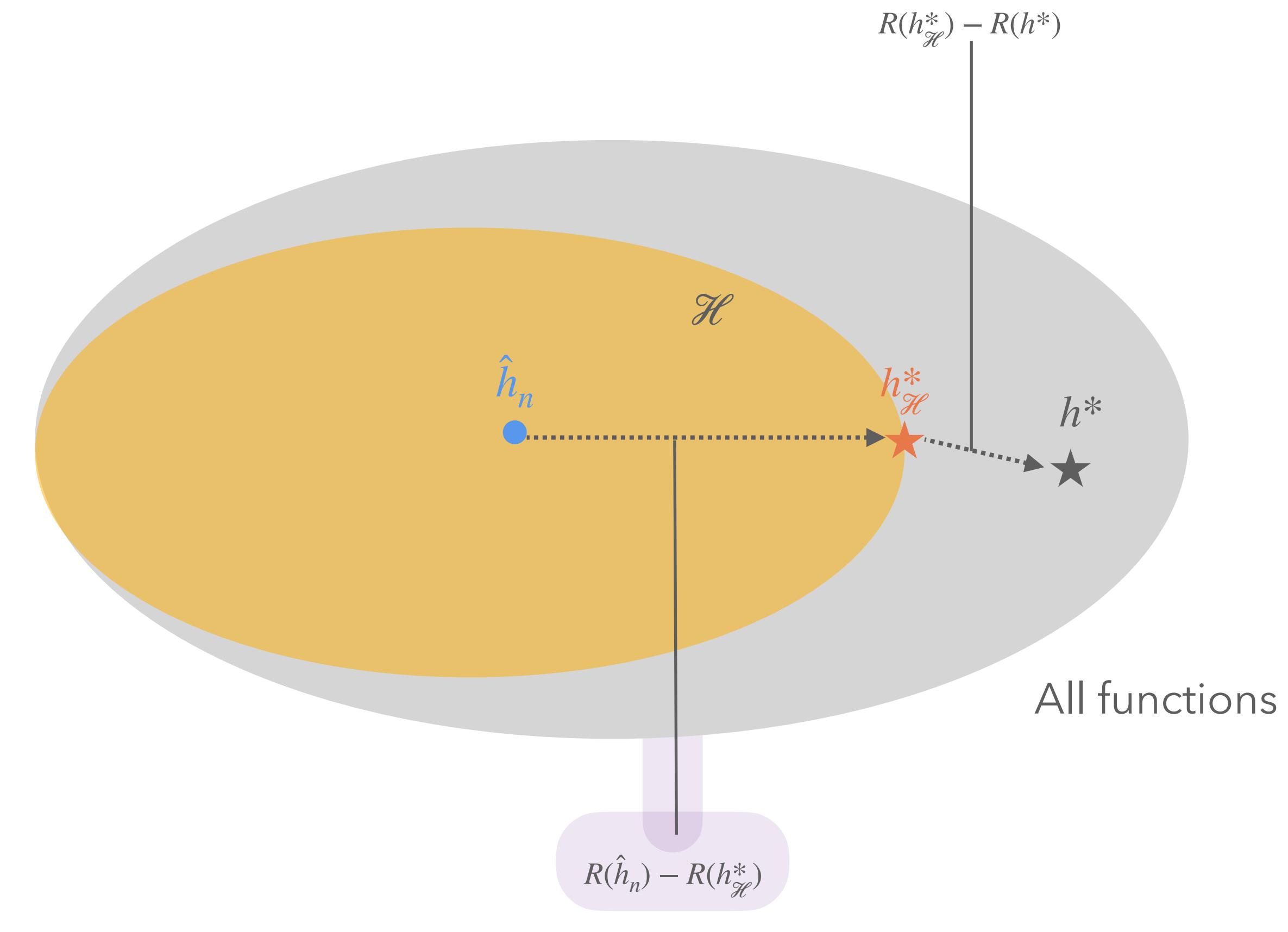
This is a random variable (why)?

Typically, when $n \rightarrow \infty$ (infinite training data), the estimation error goes to zero.

We expect that estimation error increases with larger \mathcal{H} .

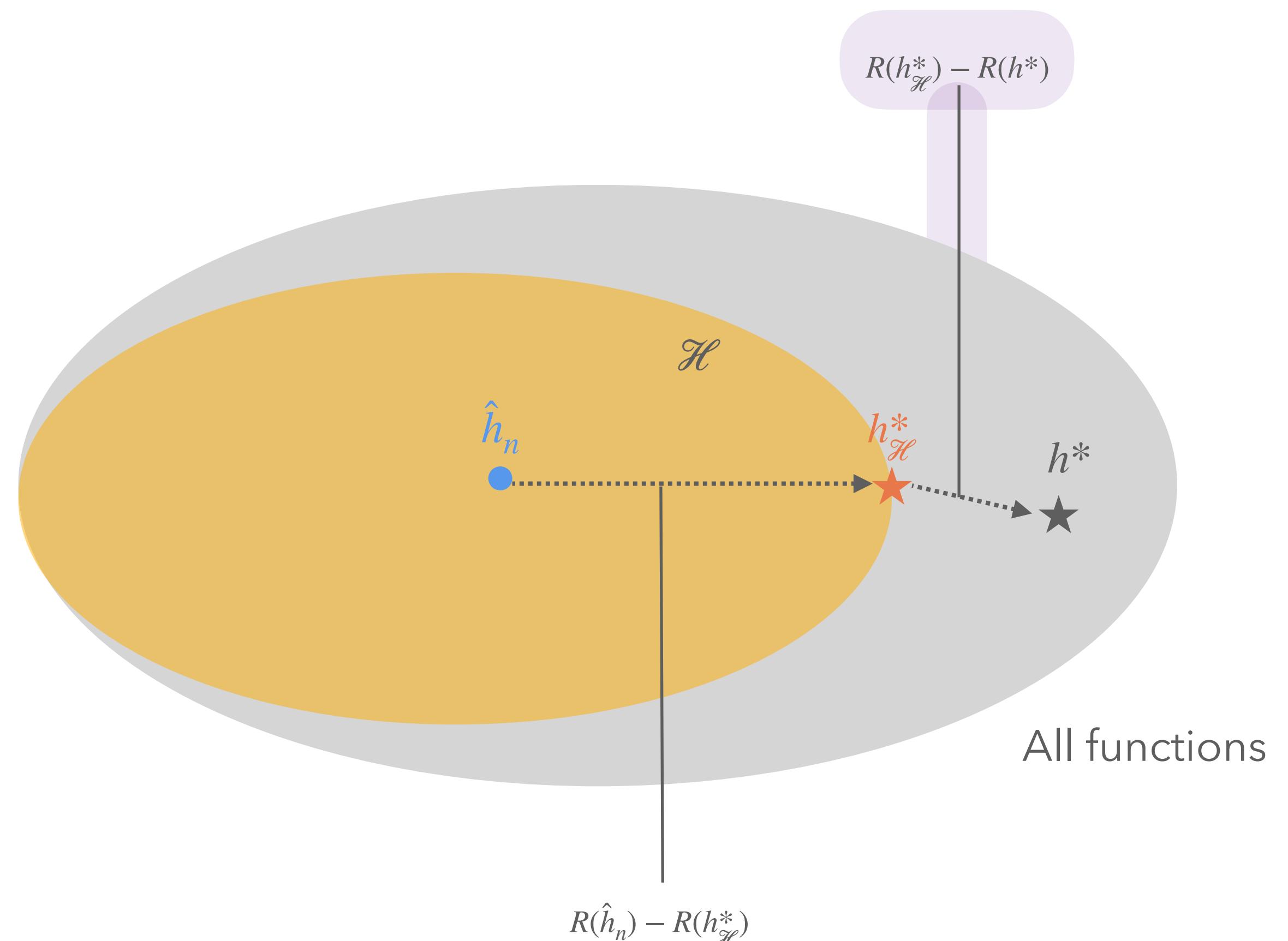
Very rough intuition: a “variance” term.

We will come back to the tension this has with modern machine learning practice!



Approximation Error

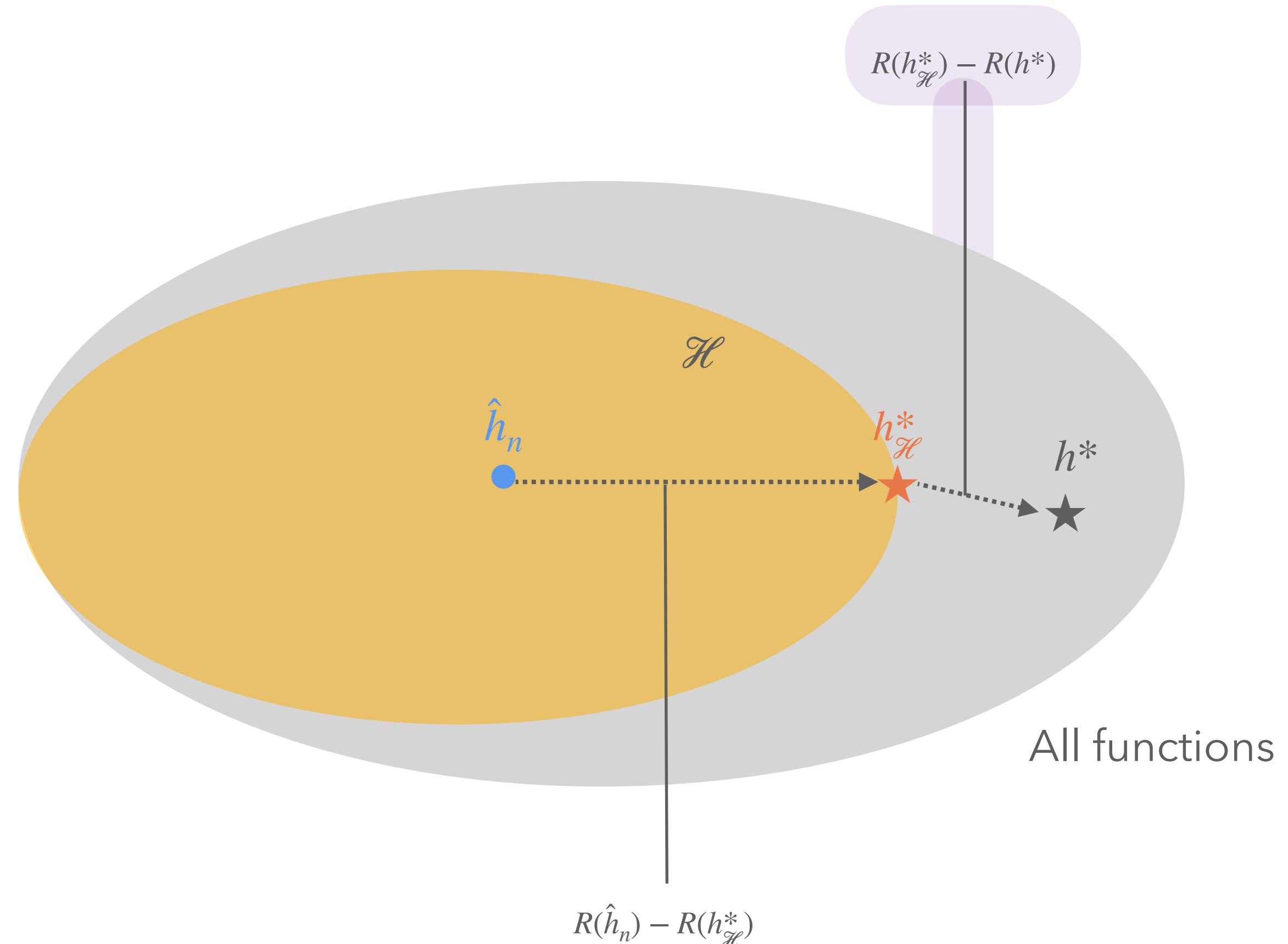
Details



Approximation Error

Details

The approximation error $R(h_{\mathcal{H}}^*) - R(h^*)$ is the error incurred by restricting to \mathcal{H} .



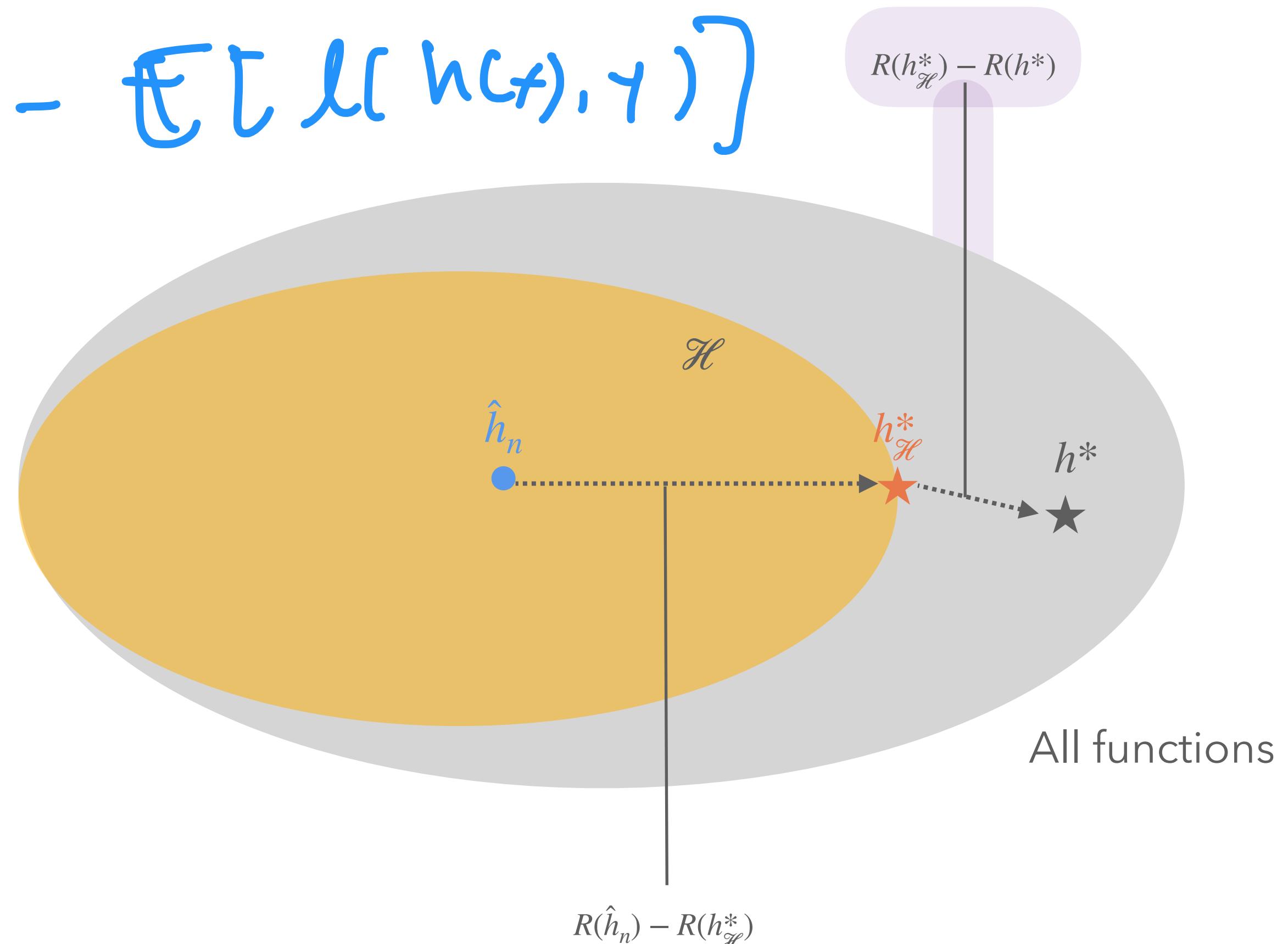
Approximation Error

Details

$$\mathbb{E}[\ell(h^*(x), y)] - \mathbb{E}[\ell(h(x), y)]$$

The approximation error $R(h_{\mathcal{H}}^*) - R(h^*)$ is the error incurred by restricting to \mathcal{H} .

This is not a random variable (why)?



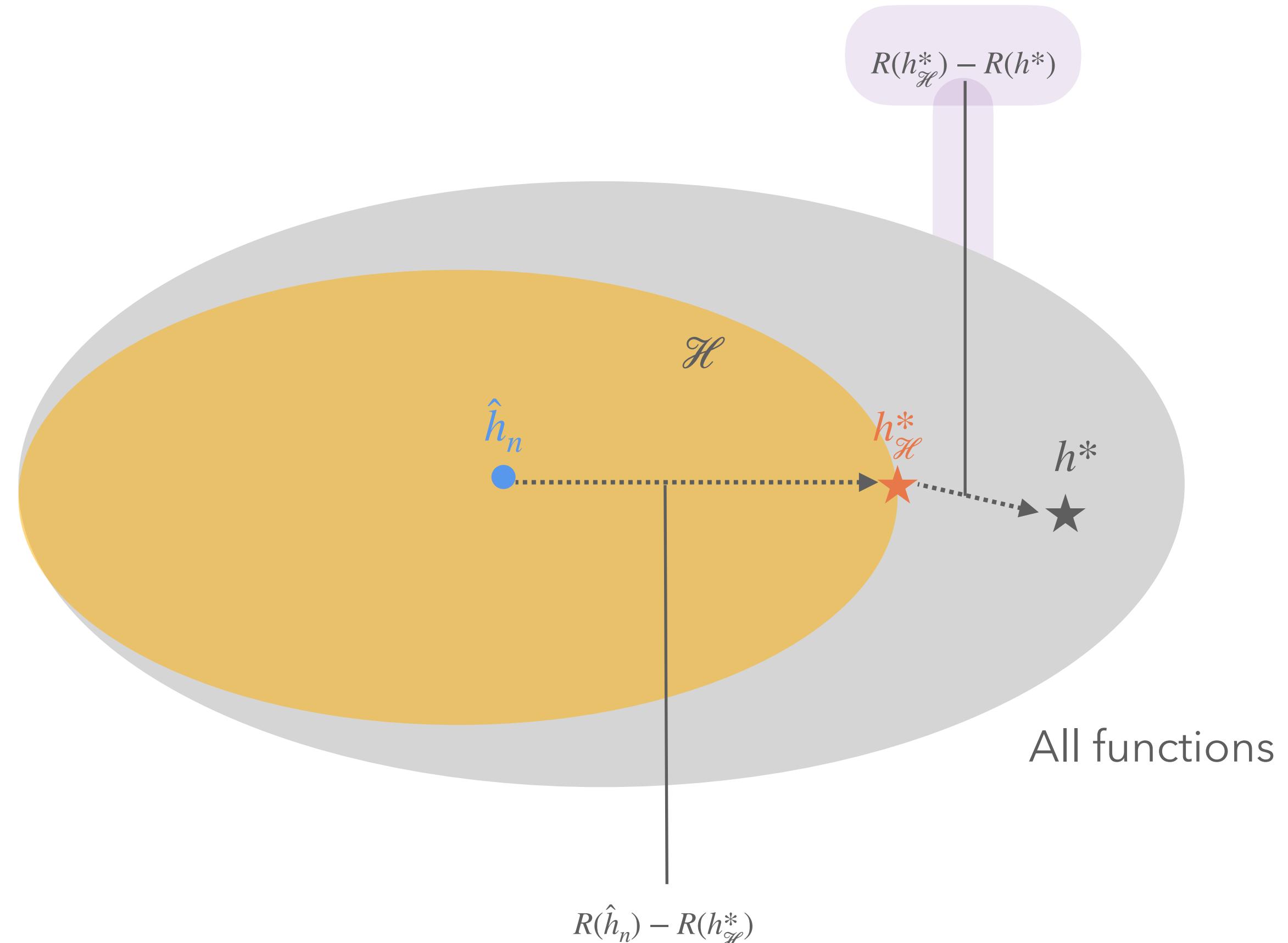
Approximation Error

Details

The approximation error $R(h_{\mathcal{H}}^*) - R(h^*)$ is the error incurred by restricting to \mathcal{H} .

This is not a random variable (why)?

Typically, approximation error decreases with larger \mathcal{H} .



Approximation Error

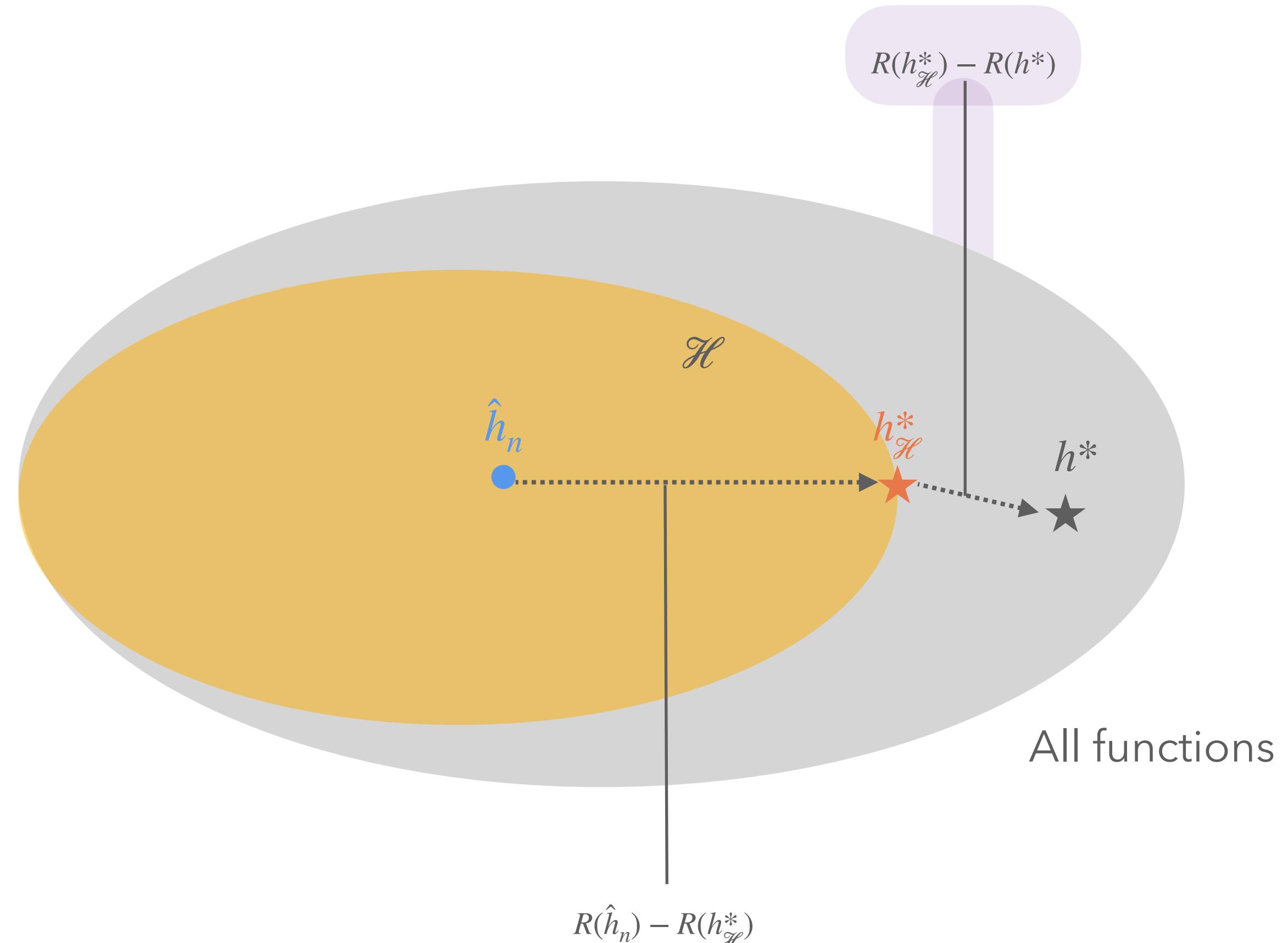
Details

The approximation error $R(h_{\mathcal{H}}^*) - R(h^*)$ is the error incurred by restricting to \mathcal{H} .

This is not a random variable (why)?

Typically, approximation error decreases with larger \mathcal{H} .

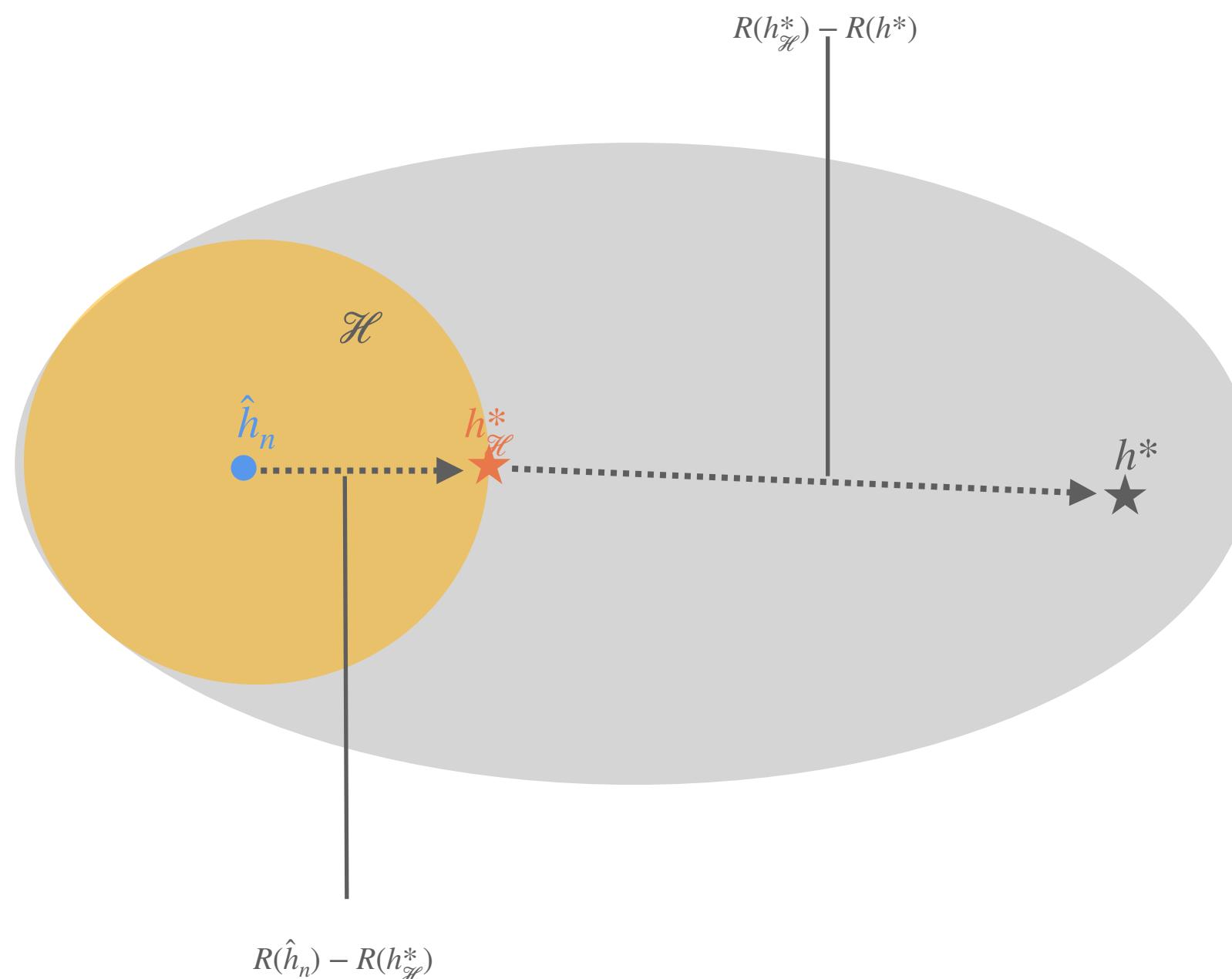
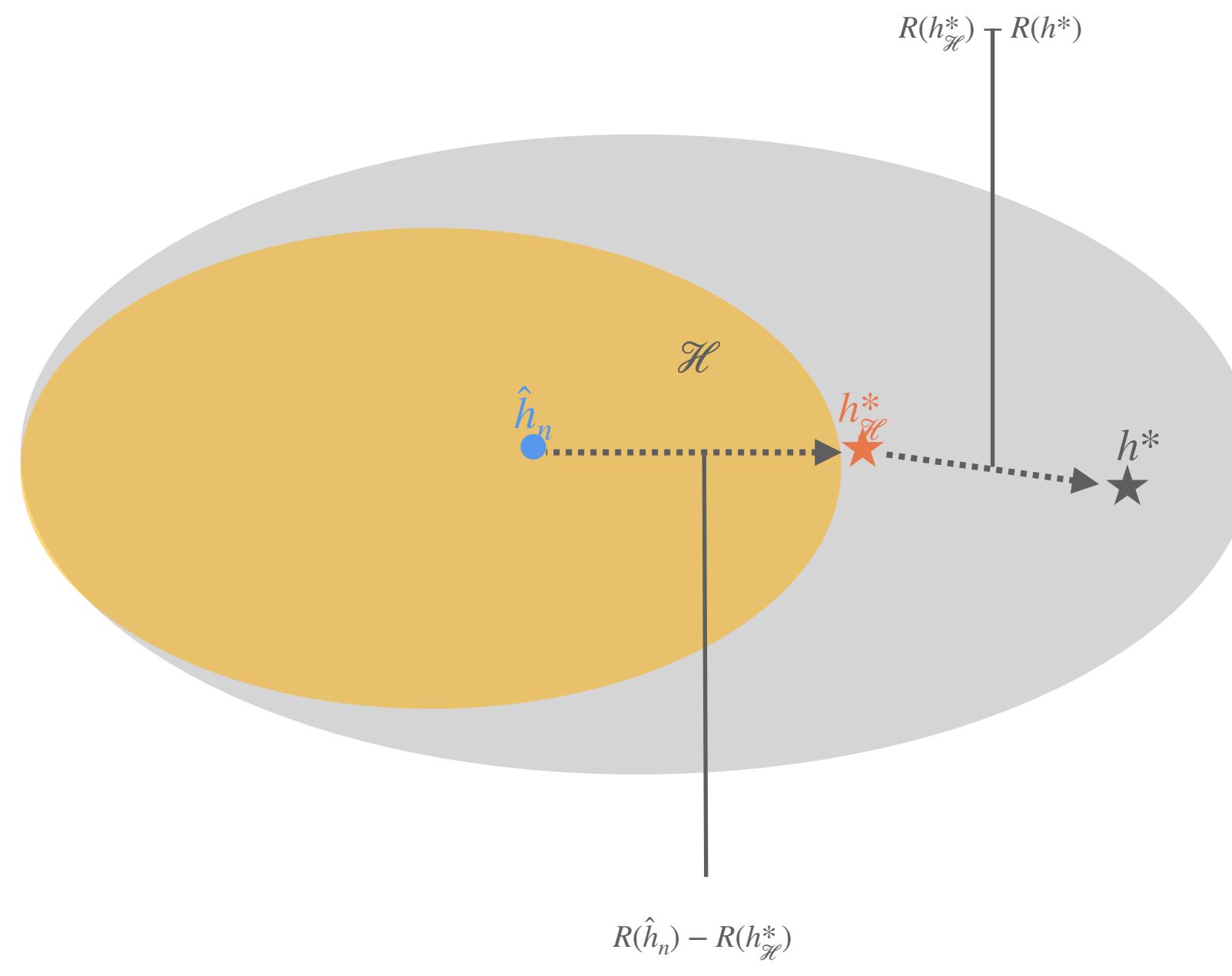
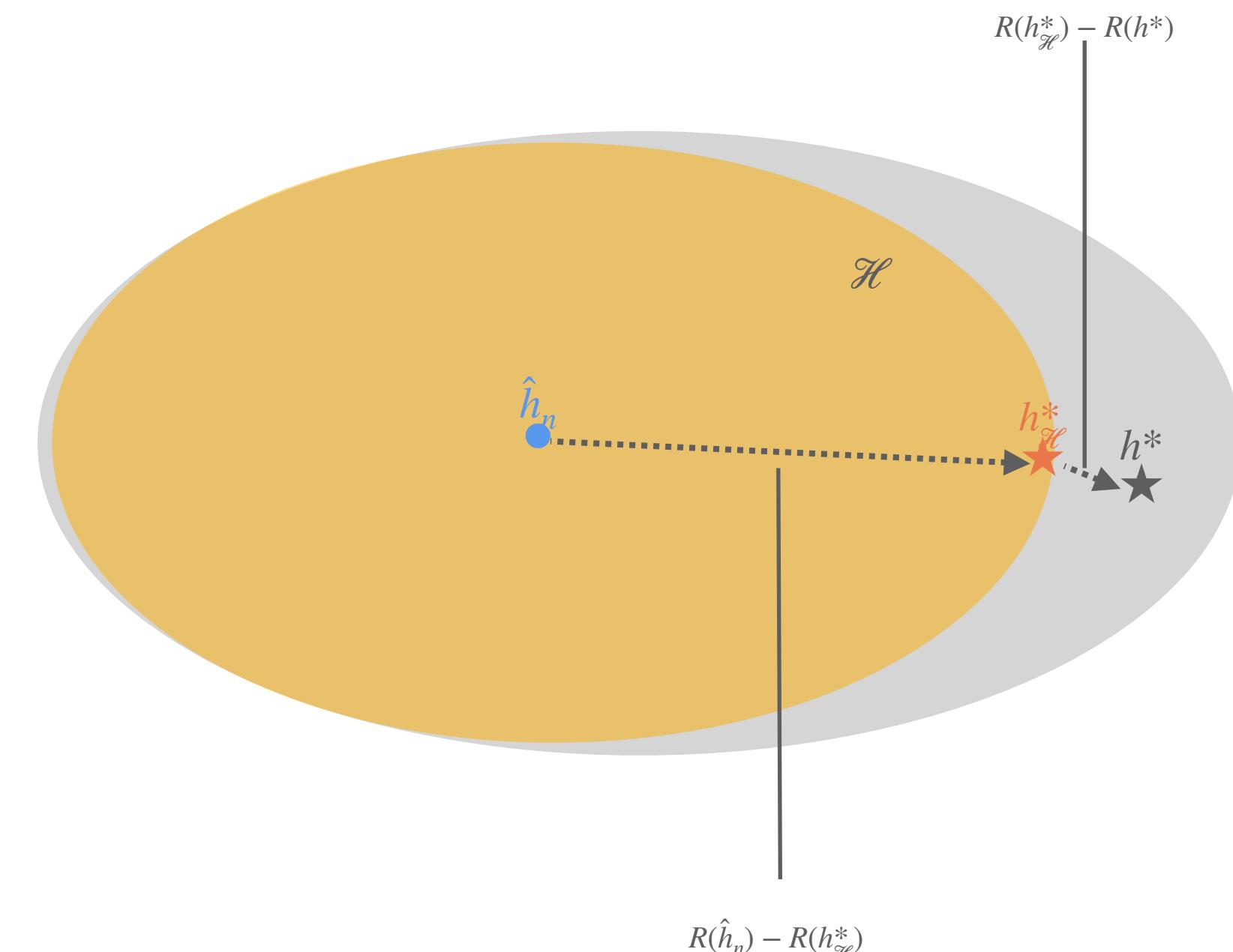
Very rough intuition: a “bias” term.



Excess Risk

Intuition: Size of \mathcal{H}

$$R(\hat{h}_n) - R(h^*) = \underbrace{R(\hat{h}_n) - R(h_{\mathcal{H}}^*)}_{\text{est. error}} + \underbrace{R(h_{\mathcal{H}}^*) - R(h^*)}_{\text{approx. error}}$$



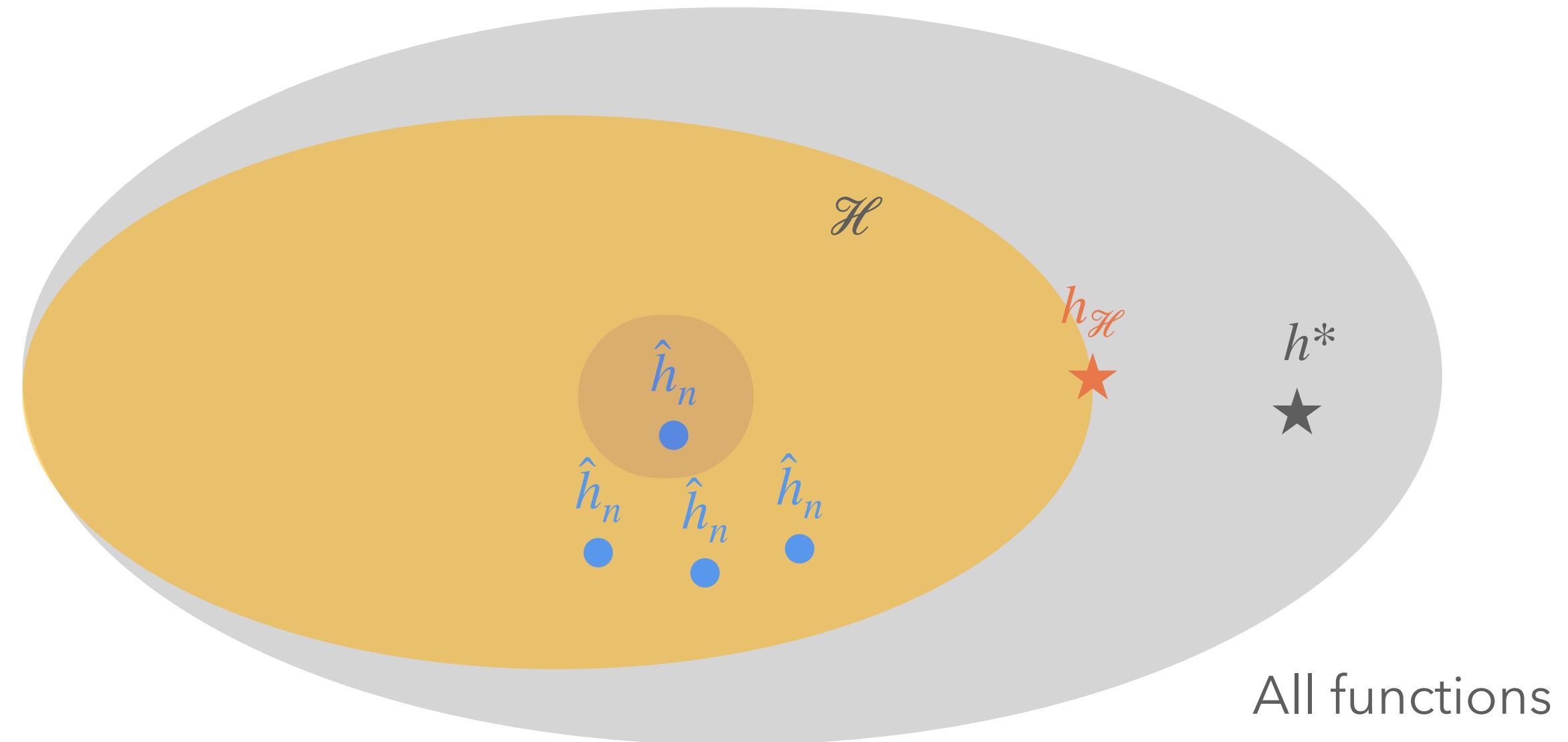
Optimization Error

Details

But how do we search for a hypothesis that minimizes empirical risk?

$$\hat{h}_n \in \operatorname{argmin}_{h \in \mathcal{H}} \underbrace{\frac{1}{n} \sum_{i=1}^n \ell(h(x^{(i)}), y^{(i)})}_{\hat{R}_n(h)}$$

To search for one of them, we run a learning algorithm which typically uses a well-defined optimization procedure.



Optimization Error

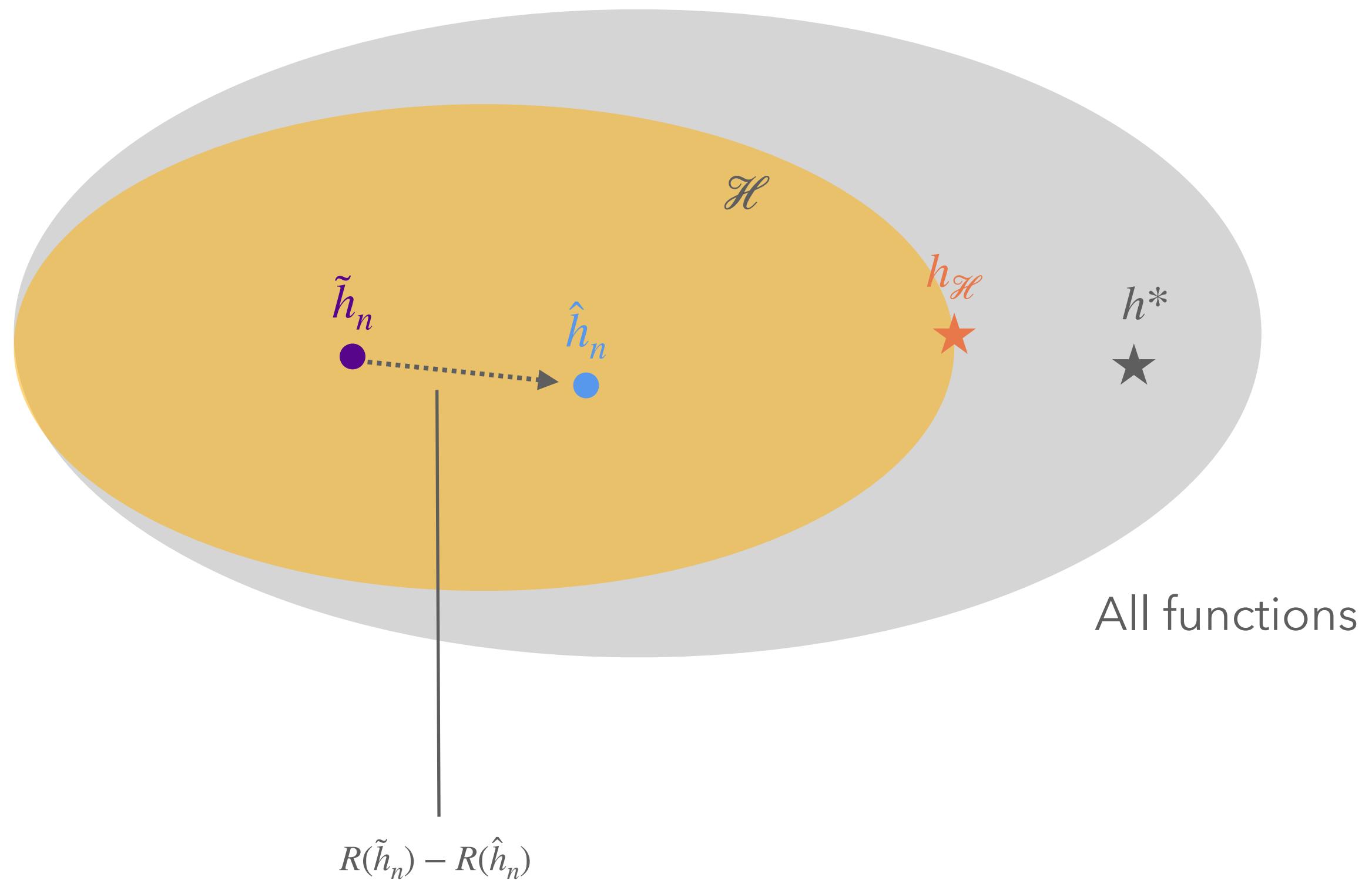
Details

We might not find the ERM $\hat{h}_n \in \mathcal{H}$.

We instead find $\tilde{h}_n \in \mathcal{H}$ via an algorithm,
typically through optimization.

The optimization error is the gap
between \tilde{h}_n (which our algorithm returns)
and \hat{h}_n (the ERM):

$$R(\tilde{h}_n) - R(\hat{h}_n).$$



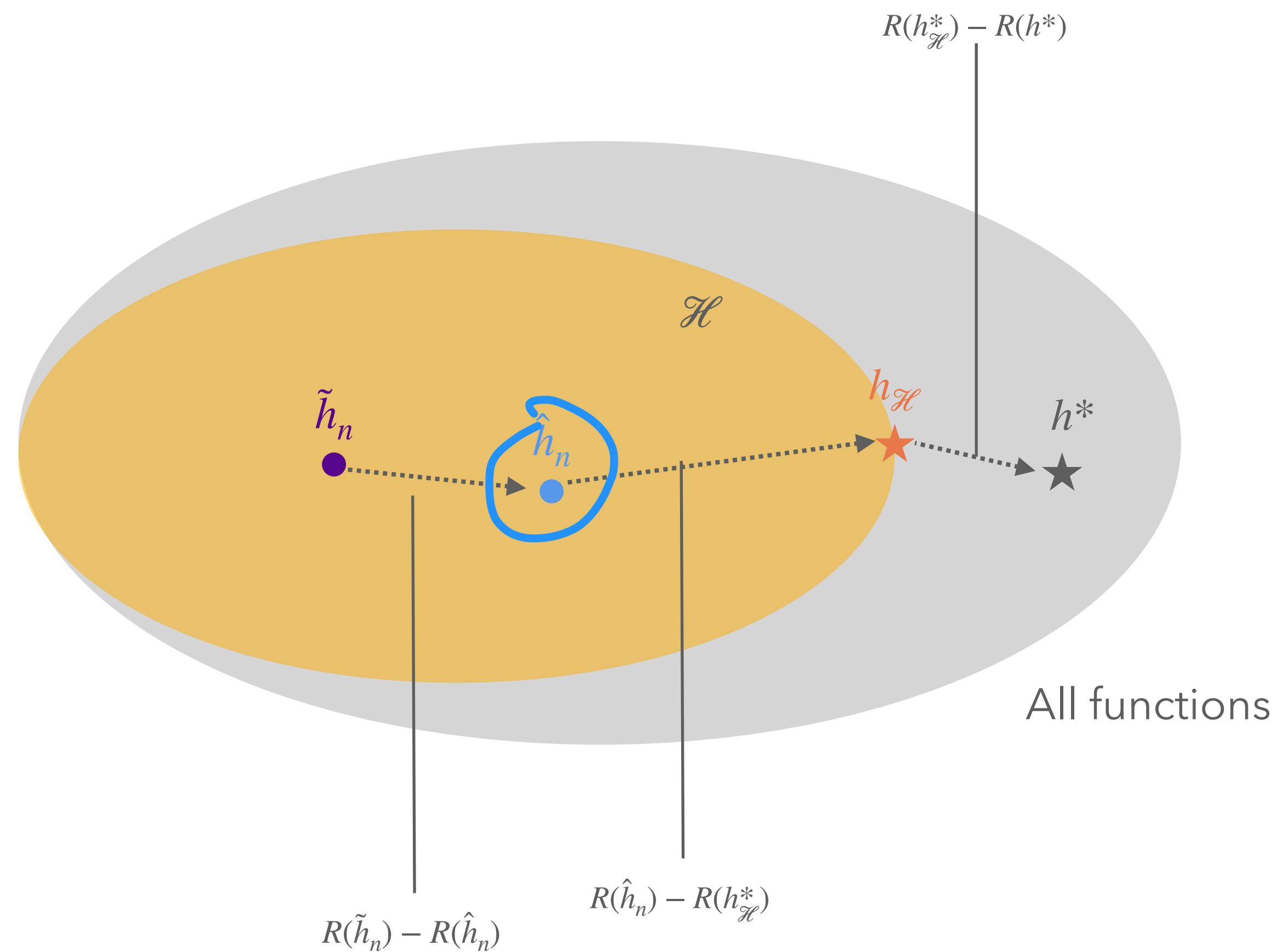
Excess Risk

Full Decomposition

We receive \tilde{h}_n from an algorithm.

Excess risk of \tilde{h}_n :

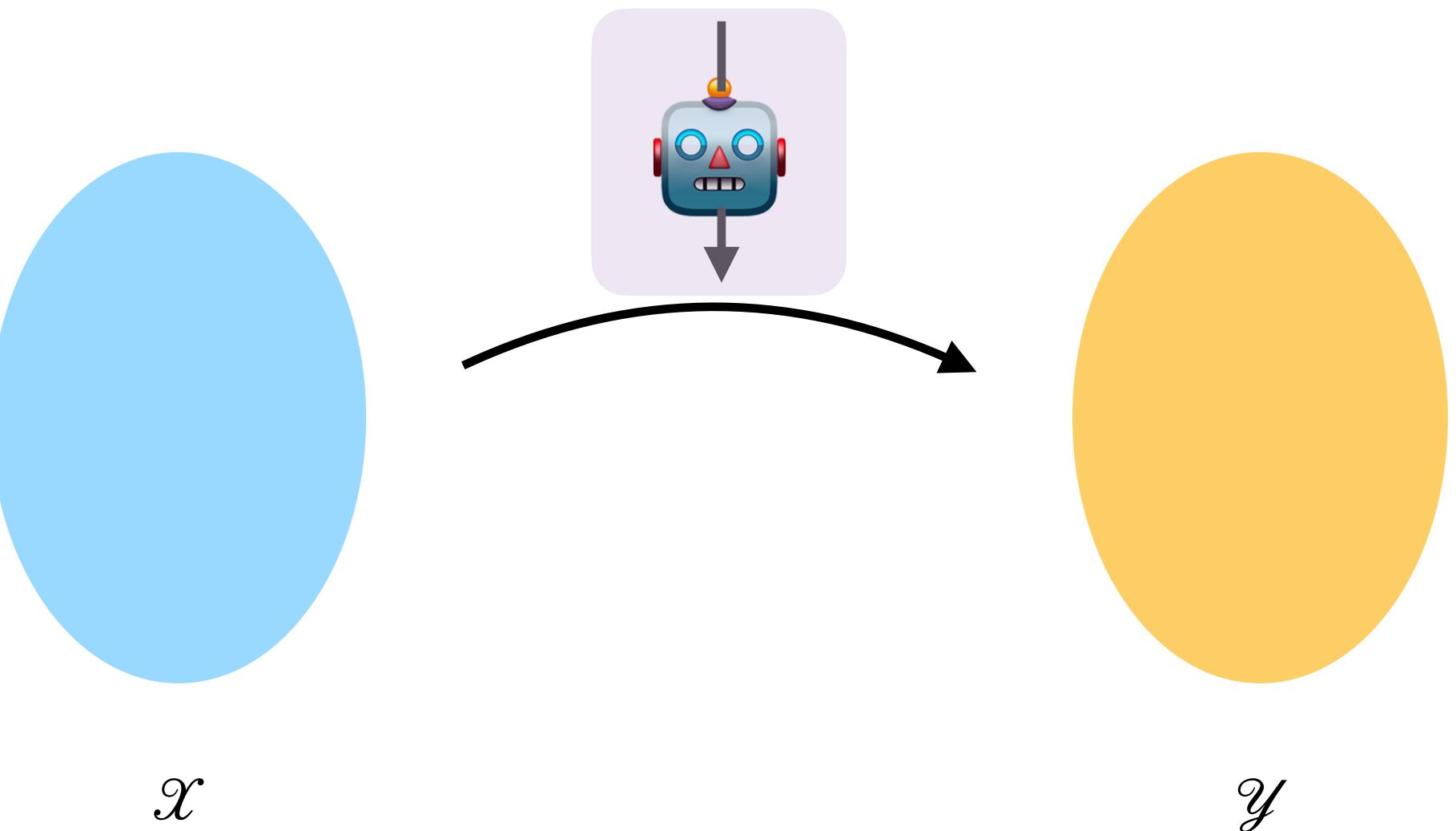
$$R(\tilde{h}_n) - R(h^*) = \underbrace{R(\tilde{h}_n) - R(\hat{h}_n)}_{\text{opt. error}} + \underbrace{R(\hat{h}_n) - R(h_{\mathcal{H}}^*)}_{\text{est. error}} + \underbrace{R(h_{\mathcal{H}}^*) - R(h^*)}_{\text{approx. error}}$$



Supervised Learning

Basic Pipeline

$$D_n := \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})\}$$

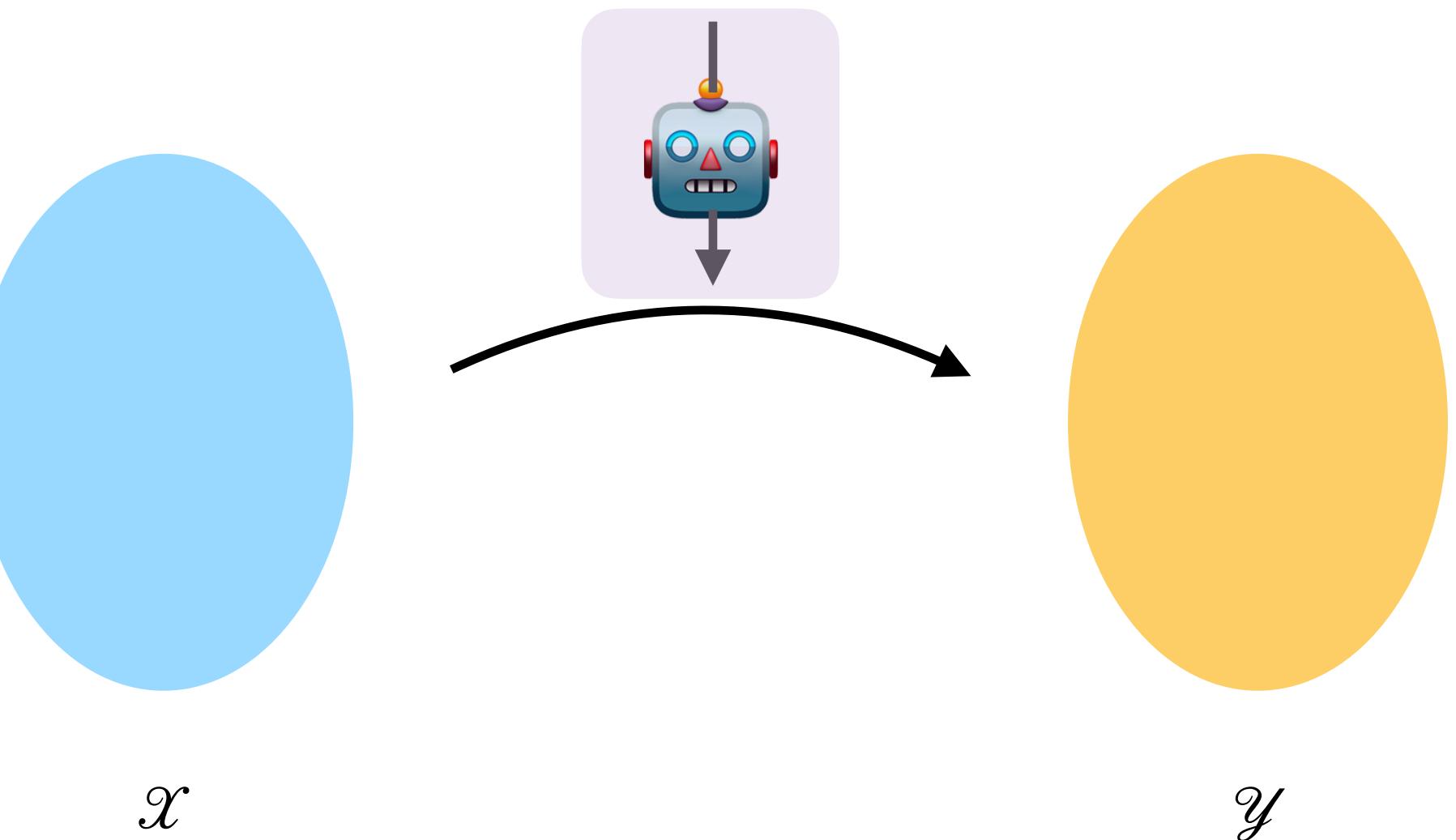


Supervised Learning

Basic Pipeline

1. Collect training dataset, a collection of labeled input-output pairs.

$$D_n := \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})\}$$

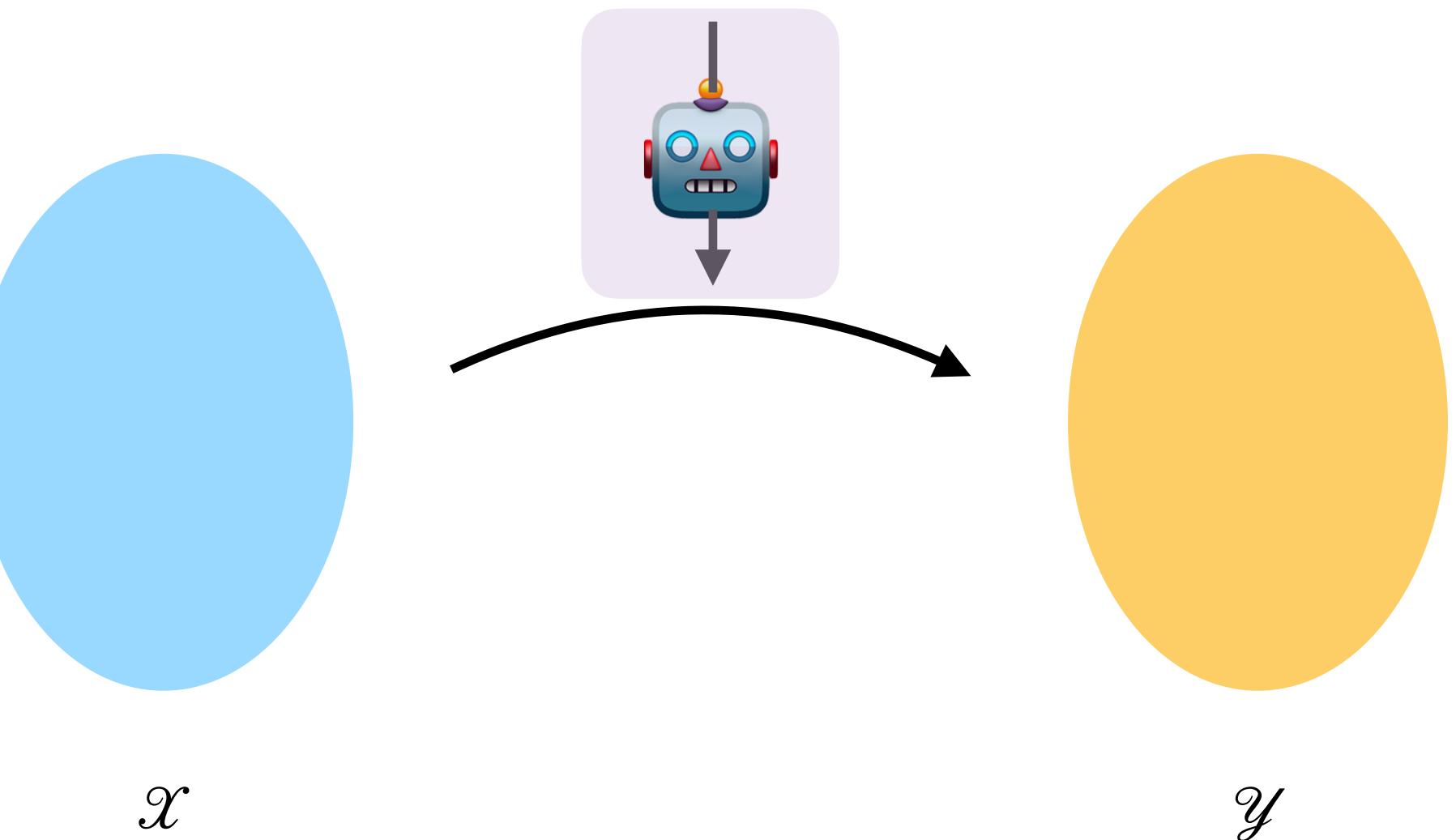


Supervised Learning

Basic Pipeline

1. Collect training dataset, a collection of labeled input-output pairs.
2. Decide on the template of the hypothesis mapping that will map inputs to actions.

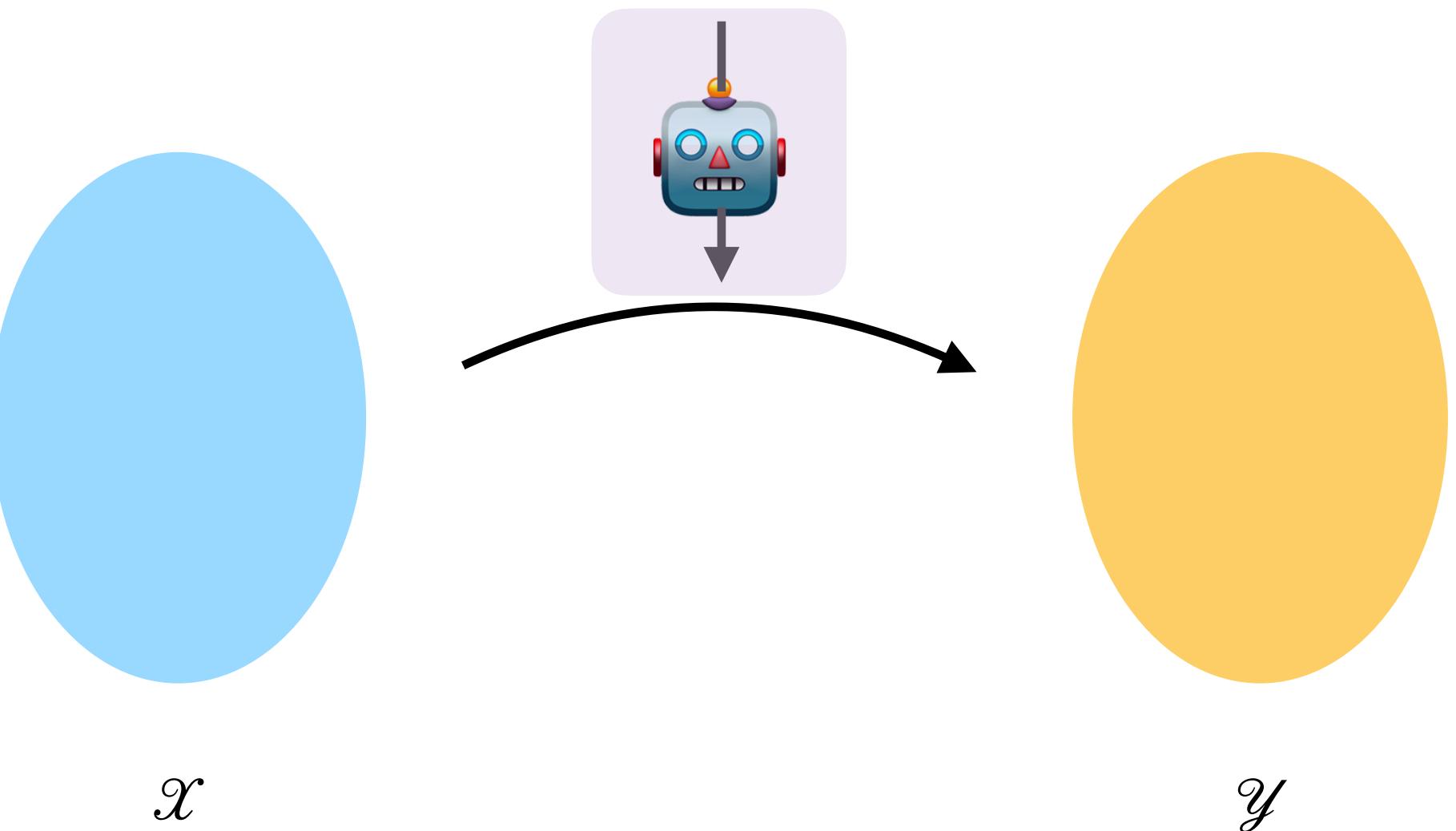
$$D_n := \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})\}$$



Supervised Learning

Basic Pipeline

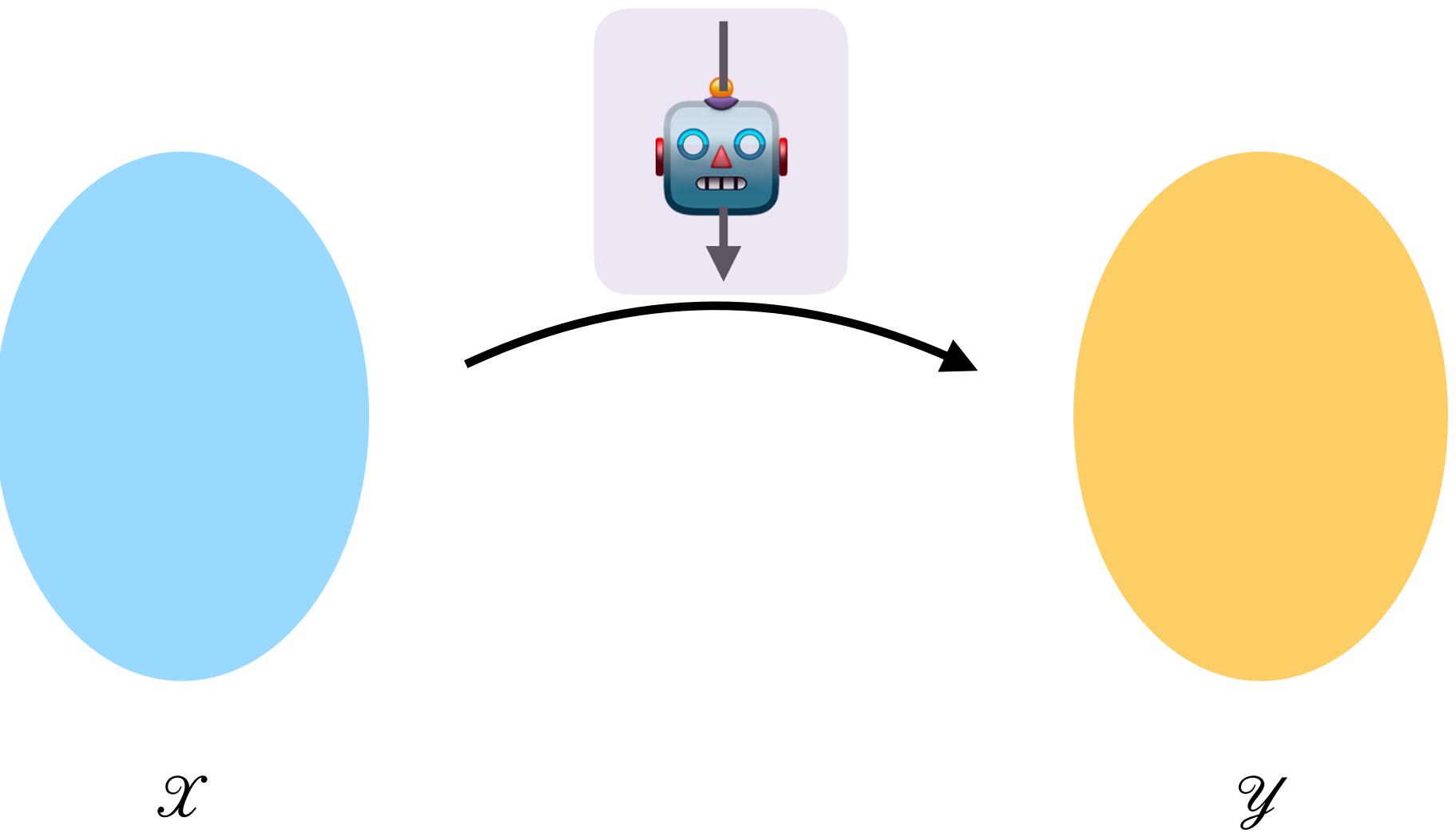
1. Collect training dataset, a collection of labeled input-output pairs.
$$D_n := \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})\}$$
2. Decide on the template of the hypothesis mapping that will map inputs to actions.
3. A learning algorithm takes the labeled training data as input and outputs a hypothesis.



Supervised Learning

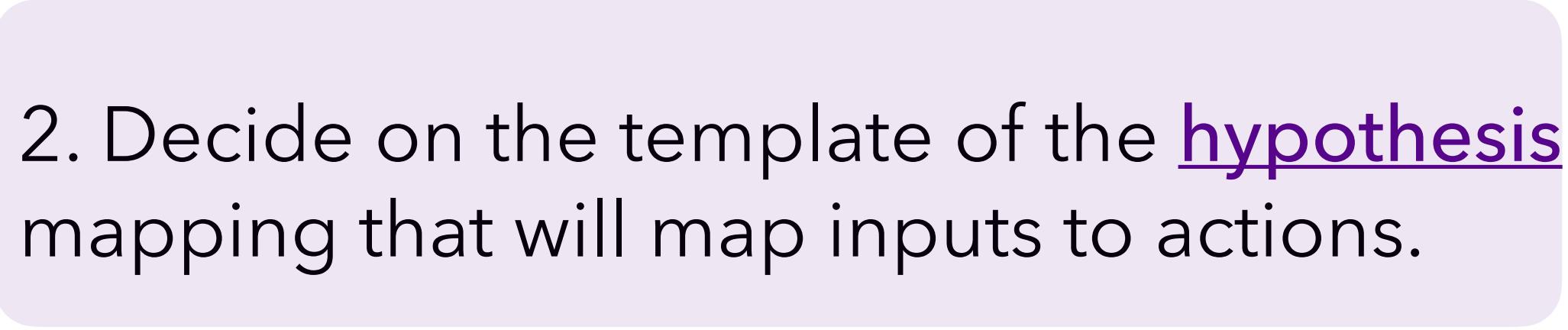
Basic Pipeline

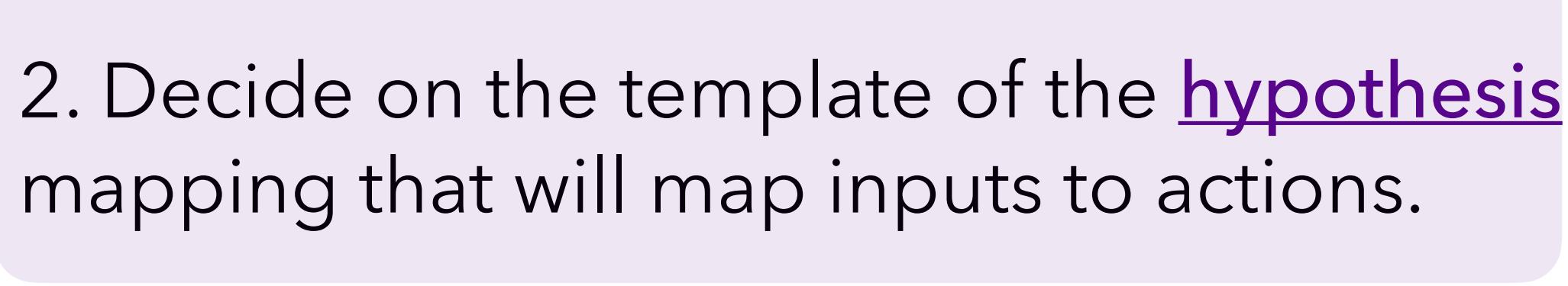
1. Collect training dataset, a collection of labeled input-output pairs.
$$D_n := \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})\}$$
2. Decide on the template of the hypothesis mapping that will map inputs to actions.
3. A learning algorithm takes the labeled training data as input and outputs a hypothesis.
4. The hypothesis predicts on new, unseen data which we hope it does well on, under a notion of loss.



Supervised Learning

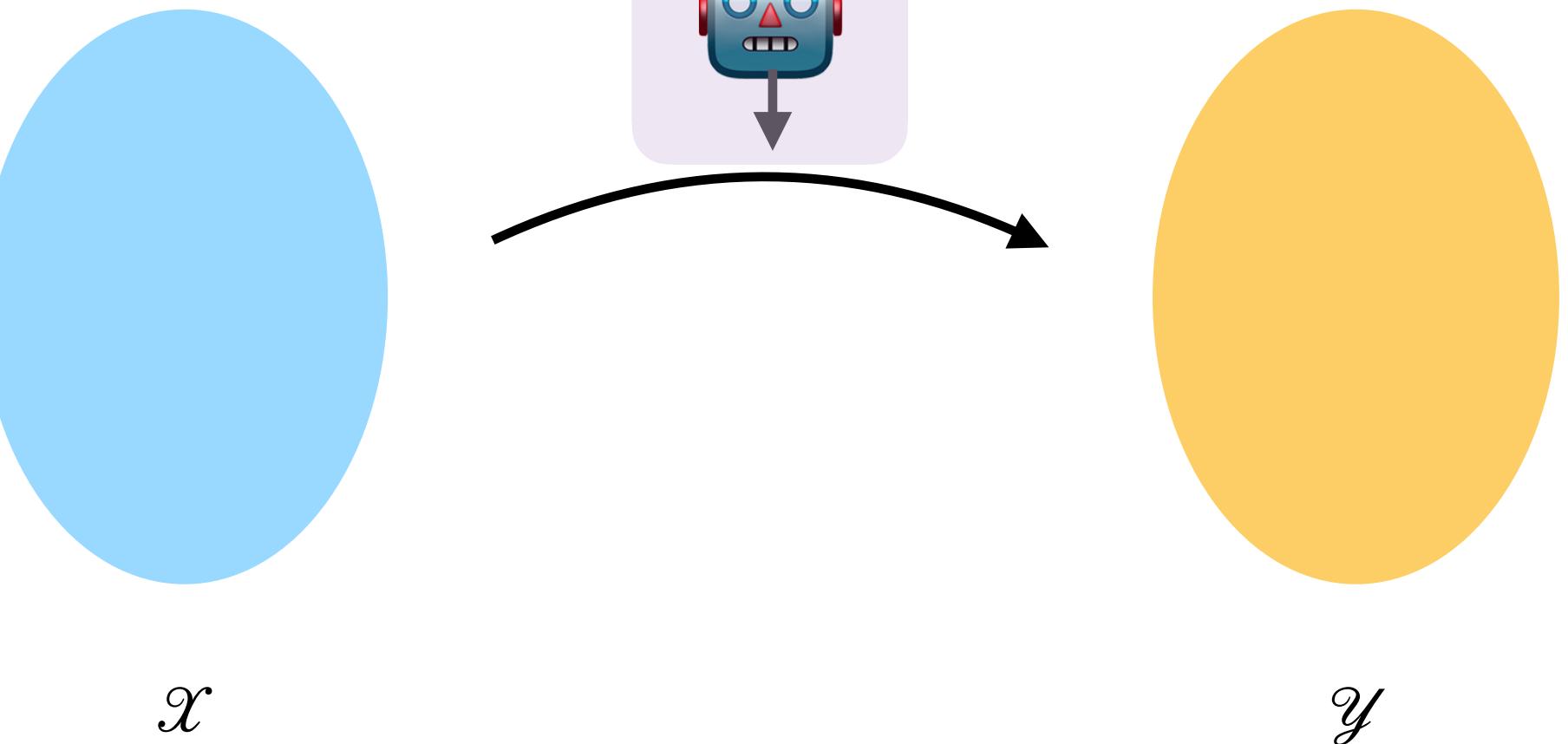
Basic Pipeline

1. Collect training dataset, a collection of labeled input-output pairs.

2. Decide on the template of the hypothesis mapping that will map inputs to actions.

3. A learning algorithm takes the labeled training data as input and outputs a hypothesis.

4. The hypothesis predicts on new, unseen data which we hope it does well on, under a notion of loss.

Representation

$$D_n := \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})\}$$



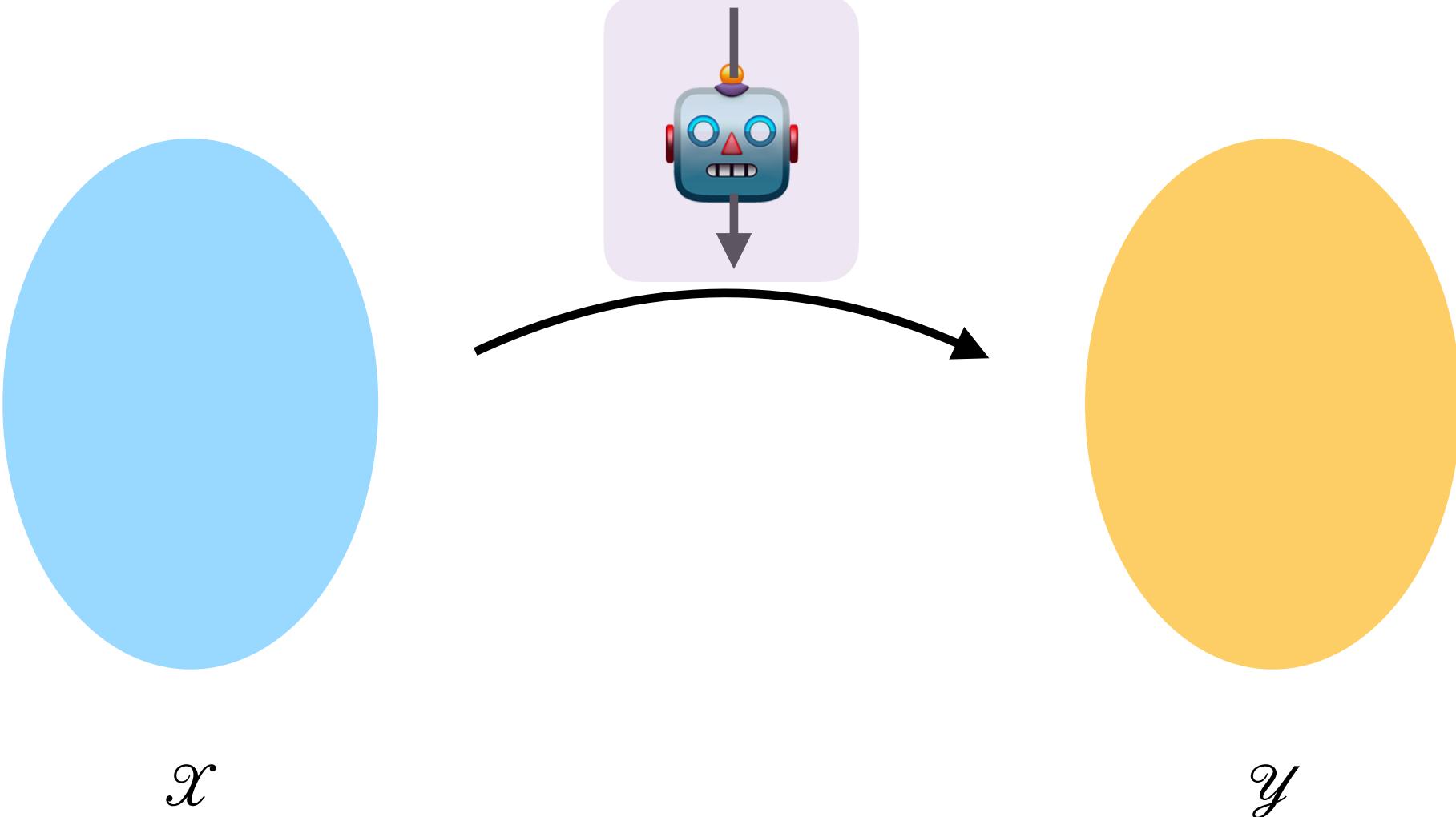
Supervised Learning

Basic Pipeline

1. Collect training dataset, a collection of labeled input-output pairs.
$$D_n := \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})\}$$
2. Decide on the template of the hypothesis mapping that will map inputs to actions.
3. A learning algorithm takes the labeled training data as input and outputs a hypothesis.
4. The hypothesis predicts on new, unseen data which we hope it does well on, under a notion of loss.

Representation

Optimization



Supervised Learning

Basic Pipeline

1. Collect training dataset, a collection of labeled input-output pairs.

2. Decide on the template of the hypothesis mapping that will map inputs to actions.

3. A learning algorithm takes the labeled training data as input and outputs a hypothesis.

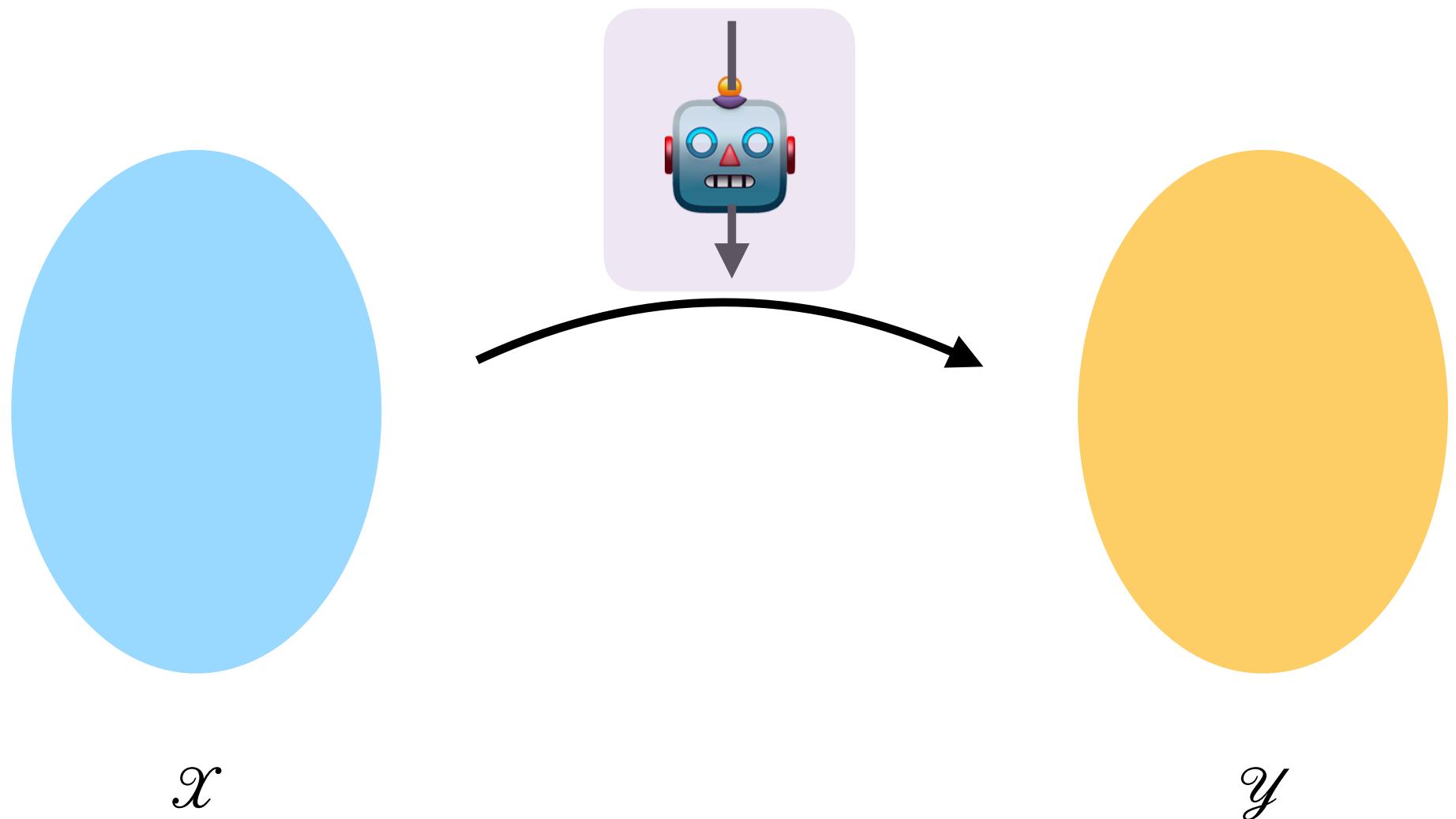
4. The hypothesis predicts on new, unseen data which we hope it does well on, under a notion of loss.

Representation

Optimization

Generalization

$$D_n := \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})\}$$



Supervised Learning

Excess Risk Formalization

1. Collect training dataset, a collection of labeled input-output pairs.
2. Decide on the template of the hypothesis mapping that will map inputs to actions.
3. A learning algorithm takes the labeled training data as input and outputs a hypothesis.
4. The hypothesis predicts on new, unseen data which we hope it does well on, under a notion of loss.

Representation
Optimization
Generalization

We receive \tilde{h}_n from an algorithm.
Excess risk of \tilde{h}_n :

$$R(\tilde{h}_n) - R(h^*) =$$
$$\underbrace{R(\tilde{h}_n) - R(\hat{h}_n)}_{\text{opt. error}} + \underbrace{R(\hat{h}_n) - R(h_n^*)}_{\text{est. error}} + \underbrace{R(h_n^*) - R(h^*)}_{\text{approx. error}}$$

Optimization Generalization Representation

Three Main Questions

Representation, Optimization, and Generalization

$$R(\tilde{h}_n) - R(h^*) =$$
$$\underbrace{R(\tilde{h}_n) - R(\hat{h}_n)}_{\text{opt. error}} + \underbrace{R(\hat{h}_n) - R(h_{\mathcal{H}}^*)}_{\text{est. error}} + \underbrace{R(h_{\mathcal{H}}^*) - R(h^*)}_{\text{approx. error}}$$

Optimization Generalization Representation

Representation: *Which hypothesis class \mathcal{H} best models the relationship of \mathcal{X} to \mathcal{A} ?*

Generalization: *How well can we extrapolate from training data to new, unseen data?*

Optimization: *How can we efficiently and accurately solve the ERM optimization problem?*

The Main Cast

Summary of the Problem

The Main Cast

Summary of the Problem

Examples from input space \mathcal{X} and output space \mathcal{Y} ; unknown distribution $P_{\mathcal{X} \times \mathcal{Y}}$ over $\mathcal{X} \times \mathcal{Y}$.

The Main Cast

Summary of the Problem

Examples from input space \mathcal{X} and output space \mathcal{Y} ; unknown distribution $P_{\mathcal{X} \times \mathcal{Y}}$ over $\mathcal{X} \times \mathcal{Y}$.

Action space \mathcal{A} as the output (often, a *prediction*) of learned hypothesis/predictor.

The Main Cast

Summary of the Problem

Examples from input space \mathcal{X} and output space \mathcal{Y} ; unknown distribution $P_{\mathcal{X} \times \mathcal{Y}}$ over $\mathcal{X} \times \mathcal{Y}$.

Action space \mathcal{A} as the output (often, a *prediction*) of learned hypothesis/predictor.

We evaluate actions with a loss function $\ell : \mathcal{A} \times \mathcal{Y} \rightarrow \mathbb{R}$.

The Main Cast

Summary of the Problem

Examples from input space \mathcal{X} and output space \mathcal{Y} ; unknown distribution $P_{\mathcal{X} \times \mathcal{Y}}$ over $\mathcal{X} \times \mathcal{Y}$.

Action space \mathcal{A} as the output (often, a *prediction*) of learned hypothesis/predictor.

We evaluate actions with a loss function $\ell : \mathcal{A} \times \mathcal{Y} \rightarrow \mathbb{R}$.

Goal: Find a hypothesis $h : \mathcal{X} \rightarrow \mathcal{A}$ to minimize the risk $R(h) := \mathbb{E}[\ell(h(x), y)]$.

The Main Cast

Summary of the Problem

Examples from input space \mathcal{X} and output space \mathcal{Y} ; unknown distribution $P_{\mathcal{X} \times \mathcal{Y}}$ over $\mathcal{X} \times \mathcal{Y}$.

Action space \mathcal{A} as the output (often, a *prediction*) of learned hypothesis/predictor.

We evaluate actions with a loss function $\ell : \mathcal{A} \times \mathcal{Y} \rightarrow \mathbb{R}$.

Goal: Find a hypothesis $h : \mathcal{X} \rightarrow \mathcal{A}$ to minimize the risk $R(h) := \mathbb{E}[\ell(h(x), y)]$.

We can approximate risk with the empirical risk over sample $D_n = \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$:

The Main Cast

Summary of the Problem

Examples from input space \mathcal{X} and output space \mathcal{Y} ; unknown distribution $P_{\mathcal{X} \times \mathcal{Y}}$ over $\mathcal{X} \times \mathcal{Y}$.

Action space \mathcal{A} as the output (often, a *prediction*) of learned hypothesis/predictor.

We evaluate actions with a loss function $\ell : \mathcal{A} \times \mathcal{Y} \rightarrow \mathbb{R}$.

Goal: Find a hypothesis $h : \mathcal{X} \rightarrow \mathcal{A}$ to minimize the risk $R(h) := \mathbb{E}[\ell(h(x), y)]$.

We can approximate risk with the empirical risk over sample $D_n = \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$:

$$\hat{R}_n(h) := \frac{1}{n} \sum_{i=1}^n \ell(h(x^{(i)}), y^{(i)}).$$

The Main Cast

Summary of the Problem

$$\Pr(h(x) \neq y) = \mathbb{E}[\Pr[h(x) \neq y | x=x]]$$

$$\begin{aligned} \underline{h^*(x)=1} \rightarrow \Pr(1 \neq y | x=x) &= \Pr(y=0 | x=x) \\ &= 1 - \Pr(y=1 | x=x) = 0.5 \end{aligned}$$

$$\begin{aligned} \underline{h^*(x)=0} \rightarrow \Pr(0 \neq y | x=x) &= \Pr(y=1 | x=x) \\ &= 0.3 = 0.7 \end{aligned}$$

$$0.6 =$$

The Main Cast

Summary of the Problem

Goal: Find a hypothesis $h : \mathcal{X} \rightarrow \mathcal{A}$ to minimize the risk $R(h) := \mathbb{E}[\ell(h(x), y)]$.

The Main Cast

Summary of the Problem

Goal: Find a hypothesis $h : \mathcal{X} \rightarrow \mathcal{A}$ to minimize the risk $R(h) := \mathbb{E}[\ell(h(x), y)]$.

We can approximate risk with the empirical risk over sample $D_n = \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$.

The Main Cast

Summary of the Problem

Goal: Find a hypothesis $h : \mathcal{X} \rightarrow \mathcal{A}$ to minimize the risk $R(h) := \mathbb{E}[\ell(h(x), y)]$.

We can approximate risk with the empirical risk over sample $D_n = \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$.

Choose a hypothesis class \mathcal{H} and find the empirical risk minimizer $\hat{h}_n \in \mathcal{H}$:

The Main Cast

Summary of the Problem

Goal: Find a hypothesis $h : \mathcal{X} \rightarrow \mathcal{A}$ to minimize the risk $R(h) := \mathbb{E}[\ell(h(x), y)]$.

We can approximate risk with the empirical risk over sample $D_n = \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$.

Choose a hypothesis class \mathcal{H} and find the empirical risk minimizer $\hat{h}_n \in \mathcal{H}$:

$$\hat{h}_n \in \operatorname*{argmin}_{h \in \mathcal{H}} \frac{1}{n} \underbrace{\sum_{i=1}^n \ell(h(x^{(i)}), y^{(i)})}_{\hat{R}_n(h)}$$

The Main Cast

Summary of the Problem

Goal: Find a hypothesis $h : \mathcal{X} \rightarrow \mathcal{A}$ to minimize the risk $R(h) := \mathbb{E}[\ell(h(x), y)]$.

We can approximate risk with the empirical risk over sample $D_n = \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$.

Choose a hypothesis class \mathcal{H} and find the empirical risk minimizer $\hat{h}_n \in \mathcal{H}$:

$$\hat{h}_n \in \operatorname*{argmin}_{h \in \mathcal{H}} \frac{1}{n} \underbrace{\sum_{i=1}^n \ell(h(x^{(i)}), y^{(i)})}_{\hat{R}_n(h)}$$

Or find \tilde{h}_n that approximates \hat{h}_n well.

The Main Cast

Summary of the Problem

The Main Cast

Summary of the Problem

Goal: Find a hypothesis $h : \mathcal{X} \rightarrow \mathcal{A}$ to minimize the risk $R(h) := \mathbb{E}[\ell(h(x), y)]$.

The Main Cast

Summary of the Problem

Goal: Find a hypothesis $h : \mathcal{X} \rightarrow \mathcal{A}$ to minimize the risk $R(h) := \mathbb{E}[\ell(h(x), y)]$.

Overall quality (excess risk) of our produced \tilde{h}_n :

The Main Cast

Summary of the Problem

Goal: Find a hypothesis $h : \mathcal{X} \rightarrow \mathcal{A}$ to minimize the risk $R(h) := \mathbb{E}[\ell(h(x), y)]$.

Overall quality (excess risk) of our produced \tilde{h}_n :

$$R(\tilde{h}_n) - R(h^*) = \underbrace{R(\tilde{h}_n) - R(\hat{h}_n)}_{\text{opt. error}} + \underbrace{R(\hat{h}_n) - R(h_{\mathcal{H}}^*)}_{\text{est. error}} + \underbrace{R(h_{\mathcal{H}}^*) - R(h^*)}_{\text{approx. error}}$$

The Main Cast

Summary of the Problem

Goal: Find a hypothesis $h : \mathcal{X} \rightarrow \mathcal{A}$ to minimize the risk $R(h) := \mathbb{E}[\ell(h(x), y)]$.

Overall quality (excess risk) of our produced \tilde{h}_n :

$$R(\tilde{h}_n) - R(h^*) = \underbrace{R(\tilde{h}_n) - R(\hat{h}_n)}_{\text{opt. error}} + \underbrace{R(\hat{h}_n) - R(h_{\mathcal{H}}^*)}_{\text{est. error}} + \underbrace{R(h_{\mathcal{H}}^*) - R(h^*)}_{\text{approx. error}}$$

Choose \mathcal{H} that balances approximation error and estimation error.

The Main Cast

Summary of the Problem

Goal: Find a hypothesis $h : \mathcal{X} \rightarrow \mathcal{A}$ to minimize the risk $R(h) := \mathbb{E}[\ell(h(x), y)]$.

Overall quality (excess risk) of our produced \tilde{h}_n :

$$R(\tilde{h}_n) - R(h^*) = \underbrace{R(\tilde{h}_n) - R(\hat{h}_n)}_{\text{opt. error}} + \underbrace{R(\hat{h}_n) - R(h_{\mathcal{H}}^*)}_{\text{est. error}} + \underbrace{R(h_{\mathcal{H}}^*) - R(h^*)}_{\text{approx. error}}$$

Choose \mathcal{H} that balances approximation error and estimation error.

With more data, estimation error typically decreases, can use bigger \mathcal{H} .

The Main Cast

Summary of the Problem

Goal: Find a hypothesis $h : \mathcal{X} \rightarrow \mathcal{A}$ to minimize the risk $R(h) := \mathbb{E}[\ell(h(x), y)]$.

Overall quality (excess risk) of our produced \tilde{h}_n :

$$R(\tilde{h}_n) - R(h^*) = \underbrace{R(\tilde{h}_n) - R(\hat{h}_n)}_{\text{opt. error}} + \underbrace{R(\hat{h}_n) - R(h_{\mathcal{H}}^*)}_{\text{est. error}} + \underbrace{R(h_{\mathcal{H}}^*) - R(h^*)}_{\text{approx. error}}$$

Choose \mathcal{H} that balances approximation error and estimation error.

With more data, estimation error typically decreases, can use bigger \mathcal{H} .

Produce \tilde{h}_n via an algorithm that (approximately and efficiently) minimizes empirical error.

Outline

Course Overview and Logistics

Introduction to Machine Learning

Statistical Learning Setup

Statistical Learning: Bayes Risk

Statistical Learning: Empirical Risk and ERM

Statistical Learning: Hypothesis Class

Excess Risk Decomposition and Three Types of Error