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Slides adapted from material from David Rosenberg’s version of DS-GA 1003.

Deng, Samuel
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Excess Risk Decomposition and Three Types of Error
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We’ll use Ed for all course 
communications!

By default, please make your questions 
public; if you have a question, it’s likely 
many other people do too! 

If necessary (e.g., if your question 
reveals the answer to a homework 
question), post privately

Only email the instructors as a last 
resort. We are flooded with emails!

We are not using Brightspace! 
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Final Project: 35%
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• We’ll do our best to post lecture slides and other relevant materials before class! 

• Lectures will be recorded (on Brightspace), but we strongly recommend in-person attendance
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Lectures: Tuesdays, 2:45-4:45PM, 36 E 8th St (Cantor Film Ctr) Room 200

Labs (mandatory!): Thursday, 7:10-8PM, 238 Thompson St (GCASL) Room C95

Lab grading policy:

• There are 12 labs in total

• You must attend 10+ labs to receive full credit for lab attendance

• You can receive 1 point of extra credit for each additional lab you attend
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The midterm will be held in-class on Tuesday, March 10th, from 2:45-4:45PM.

IMPORTANT: Please make sure you are available at this time as we will not be able to offer 
makeup midterms! If you have a conflict, then you should consider not taking this course.
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• Track 1: Applied ML - choose a real-world problem, identify how and why machine learning 
could be helpful, and find or collect a relevant dataset for the problem. Then, establish baselines 
and compare performance of many different ML techniques learned in class.

• Track 2: Research - identify a gap in the literature for an ML topic of interest, and then propose 
and execute experiments to address the gap. Then, write a NeurIPS/ICML/ICLR-style paper. 

Key dates:

• Groups formed for projects: Feb 28th

• Project proposal (~2 pages): March 31st

• Final project submitted: May 8th

Final Project
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One exception: coding tools like Cursor and Claude Code are allowed if you are doing the 
“research track” for the final project. However, using LLMs for writing your final report is not 
allowed under either track.
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Jan 23rd: Homework 0 due

Feb 2nd: last day to add/drop classes on Albert

Feb 3rd: Homework 1 due

Feb 28th: project groups formed

Mar 10th: midterm, in-class

Key dates and deadlines
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Yes, if:

• You are a CDS MS or PhD student 

• You have familiarity with linear algebra, calculus, and basic programming

• You have taken DS-GA 1001 and DS-GA 1002

• You are available on Tuesday, March 10th from 2:45-4:45PM

If you think you have equivalent experience but haven’t met the prerequisites: please email us 
your transcript and relevant course syllabi and we can review your waiver request

Should I take this class?
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Currently: 154 students (max of 200)

Priority order for registration:

• Data science graduate students (MS and PhD)

• Non-data science PhD students: please ask your advisor to reach out to Tina Lam 
(tina.lam@nyu.edu) to request your enrollment in this course

• MS students from other departments with appropriate prerequisites: registration should now 
be open. If you have issues, please contact cds-masters@nyu.edu 
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24

mailto:tina.lam@nyu.edu
mailto:cds-masters@nyu.edu


Anonymous Feedback

25



Anonymous Feedback

25

We want to provide a good learning 
experience and improve this course for 
future semesters!



Anonymous Feedback

25

We want to provide a good learning 
experience and improve this course for 
future semesters!

Anonymous feedback form 
available at all times.



Outline

Course Overview and Logistics 

Introduction to Machine Learning 

Statistical Learning Setup 

Statistical Learning: Bayes Risk 

Statistical Learning: Empirical Risk and ERM 

Statistical Learning: Hypothesis Class 

Excess Risk Decomposition and Three Types of Error

26



Given a dataset of photos of cats, predict the breed of a cat. 

“Siamese”

By Karin Langner-Bahmann, upload von Martin Bahmann - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/
index.php?curid=3020045
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Given a dataset of music listeners and songs, predict whether a user likes a song. 

👍 👎

By https://open.spotify.com/album/26ZV7BuCkdY3INkETgEJ0e?si=-5kn-WvIQsesSQGof-BD3w, Fair use, https://en.wikipedia.org/w/index.php?curid=4897516
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Given a written Chinese sentence, return the English translation. 

“Hello world”
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Given a dataset of meteorological measurements, forecast the temperature. 

81
humidity wind 

(mph)
cloud 
cover

month pressure 
(in)

33% 7 2 march 29
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Given a written English text passage, predict the (“most probable”) next word. 

“fortune”

31



“Traditional Programs” vs. Machine Learning

Many problems are difficult to “program by hand.” 

Image recognition, language processing, product recommendation, etc. 

Machine learning approach: construct an algorithm that learns automatically from data or 
experience, and output a program, typically to solve a prediction problem: 

Given an input , predict the output .x y

32
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“Traditional Programs”

Suppose we want to classify handwritten digits (example: MNIST dataset). 

How would you handwrite code to distinguish between digits?

33
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Example: Image Classification

Given an input , predict the output . 

Input : 1000x1000 pixel image of a cat or dog. 

Output : “CAT” or “DOG” 

This is a binary classification problem, where  is one of two possible outputs.

x y

x

y

y

34
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Example: Medical Diagnosis
Multiclass Classification

Given an input , predict the output . 

Input : Symptoms of an individual patient (fever, cough, nausea…) 

Output : Diagnosis (pneumonia, flu, cold, bronchitis, …) 

This is a multiclass classification problem, where  is from a discrete set of possible outputs. 

 

 

x y

x

y

y

Pr(pneumonia) = 0.7

Pr(flu) = 0.1

⋮
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Example: Stock Price Prediction
Regression

Given an input , predict the output . 

Input : History of stock prices, volume of stock. 

Output : Price of a stock at the close of the next day. 

This is a regression problem, where  is a continuous output.

x y

x

y

y
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Machine Learning Approach

Suppose we want to classify handwritten digits (example: MNIST dataset). 

Gather a labeled dataset of inputs and outputs. 

Use this data to “automatically” find the best rule for classifying digits.

37
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Supervised Machine Learning
A Definition

The study of making predictions from data. 
Dn := {(x(1), y(1)), (x(2), y(2)), …, (x(n), y(n))}

𝒳 𝒴
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A Definition

The study of making predictions from data. 

𝒳 𝒴

ℝd
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41

Dn := {(x(1), y(1)), (x(2), y(2)), …, (x(n), y(n))}



Supervised Machine Learning
A Definition

The study of making predictions from data. 

𝒳 𝒴

+
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Supervised Machine Learning
A Definition

The study of making predictions from data. 

𝒳 𝒴

1

2

32

⋮
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The study of making predictions from data. 

𝒳 𝒴
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Supervised Machine Learning
A Definition

The study of making predictions from data. 
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Basic Pipeline
Supervised Learning
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Basic Pipeline

1. Collect training dataset, a collection of 
labeled input-output pairs.

2. Decide on the template of the hypothesis 
mapping that will map inputs to actions.

3. A learning algorithm takes the labeled 
training data as input and outputs a 
hypothesis.

4. The hypothesis predicts on new, unseen 
data which we hope it does well on, under a 
notion of loss.

Supervised Learning

46
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🤖

Dn := {(x(1), y(1)), (x(2), y(2)), …, (x(n), y(n))}

Representation

Optimization
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Inputs, Outcomes, and Evaluation
The Basic Prediction Problem

The “template” of the problems we care about follow this structure:

1. Observe an input .x ∈ 𝒳

2. Take an action .a ∈ 𝒜

3. Observe the true outcome .y ∈ 𝒴

4. Evaluate the actions in relation to the outcome.
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Inputs, Outcomes, and Evaluation
Input Space

 is the input space (aka feature space), where  is an input.𝒳 x ∈ 𝒳

In many cases, , -dimensional Euclidean space.𝒳 = ℝd d

Example: Measurements in an individual’s medical exam (height, weight, BP, etc.)

Example: Pixels in a 1,024x1,024 image.

Example: Words in a document of English text.

The task of finding good features for a task is known as feature engineering.

Neural networks (latter half of semester) can be seen as “automated feature engineers.”
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 is the outcome space (aka label space), where  is outcome/label.𝒴 y ∈ 𝒴

In many cases,  can be encoded as a single number.𝒴

Example:  (e.g. yes/no, cat/dog, etc.) in binary classification.𝒴 = {−1, + 1}

Example:  (e.g. English word, breed of cat, etc.) in multiclass classification.𝒴 = {1,2,…, k}

Example:  (e.g. day’s temperature, stock price, etc.) in regression.𝒴 = ℝ
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Inputs, Outcomes, and Evaluation
Action Space

 is the action space, where  is an action.𝒜 a ∈ 𝒜

Generic term for what is produced by our system (in many cases, a prediction).

In many cases, we will set .𝒜 = 𝒴

Example: Produce a /  classification (binary classification).−1 1

Example: Reject hypothesis that  (classical  statistics).θ = 0

Example: Prediction of storm location in 3 hours.

Example: Written English text (image captioning, speech recognition, translation).
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Evaluation (Loss Functions)

A loss function  measures the “badness” of action  with respect to .ℓ : 𝒜 × 𝒴 → ℝ a y ∈ 𝒴

(a, y) ↦ ℓ(a, y)

By convention, smaller loss is better, and loss is usually non-negative.
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Inputs, Outcomes, and Evaluation
Loss Function Examples

Example.  or  and . A reasonable loss is zero-one loss.𝒴 = {−1, + 1} 𝒴 = {1,…, k} 𝒜 = 𝒴

      or, shorthand:  ℓ(a, y) = {1 if a ≠ y
0 otherwise

ℓ( ̂y, y) := 1{a ≠ y}

Example.  and . A reasonable loss is the squared loss.𝒴 = ℝ 𝒜 = 𝒴

.ℓ( ̂y, y) = (a − y)2
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1. Observe an input .x ∈ 𝒳

2. Take an action .a ∈ 𝒜

3. Observe the true outcome .y ∈ 𝒴

4. Evaluate the actions in relation to the outcome.
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Minimizing Risk
What’s the smallest possible risk?

 

Our ultimate goal will typically be to minimize this quantity!

R(h) := 𝔼(x,y)∼P𝒳×𝒴 [ℓ(h(x), y)]
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R(h)

where the minimum is taken over all possible functions from  to .𝒳 𝒜
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Minimizing Risk
What’s the smallest possible risk?

 

Our ultimate goal will typically be to minimize this quantity! 

Problem: We don’t know what  is in a machine learning problem! 

R(h) := 𝔼(x,y)∼P𝒳×𝒴 [ℓ(h(x), y)]

P𝒳×𝒴
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Minimizing Risk
What’s the smallest possible risk?

 

Our ultimate goal will typically be to minimize this quantity! 

Problem: We don’t know what  is in a machine learning problem! 

But we assume that we have a dataset of i.i.d. samples: 

R(h) := 𝔼(x,y)∼P𝒳×𝒴 [ℓ(h(x), y)]

P𝒳×𝒴

Dn := {(x(1), y(1)), …, (x(n), y(n))}
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Empirical Risk
Definition

Let  be drawn i.i.d. from .Dn := {(x(1), y(1)), …, (x(n), y(n))} P𝒳×𝒴

The empirical risk of  with respect to  ish : 𝒳 → 𝒜 Dn

.R̂n(h) =
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n

n

∑
i=1

ℓ(h(x(i)), y(i))

By the strong law of large numbers,

 almost surely.lim
n→∞

R̂n(h) = R(h)

But, in practice, we only have a finite sample.
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Example

 and  always. 

Draw i.i.d. sample of size : 

. 

Under  (squared loss): 

 

This is an ERM.

P𝒳 = Unif([0,1]) Y = 1

n = 3
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ℓ( ̂y, y) = ( ̂y − y)2
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ĥ(x) = {1 if x ∈ {0.25,0.5,0.75}
0 otherwise

Empirical risk under zero-one loss:

R̂n(ĥ) =
1
3

3

∑
i=1

1{ĥ(x(i)) ≠ y(i)} = 0

True risk under zero-one loss:

R(ĥ) = 𝔼[1{ĥ(x) ≠ y}] = Pr(ĥ(x) ≠ y) = 1
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What went wrong?

Dn = {(0.25,1), (0.5,1), (0.75,1)}

ĥ(x) = {1 if x ∈ {0.25,0.5,0.75}
0 otherwise

This failed spectacularly because  just memorized the data.ĥ

In ML, we want our hypotheses to generalize from training data to new data.

In order to do this, we need to smooth things out: 

Model how information is structured in input space  to unobserved parts of !𝒳 𝒳
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Hypothesis Class
Definition

A hypothesis class is a set of functions  where we will search for .ℋ ⊆ 𝒜𝒳 h

Class of all functions, .𝒜𝒳

Hypothesis class ℋ
h : 𝒳 → 𝒜
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Example: ℋconst

 and  always. 

. 

 

ERM over : 

P𝒳 = Unif([0,1]) Y = 1

Dn = {(0.25,1), (0.5,1), (0.75,1)}

ĥ(x) = {1 if x ∈ {0.25,0.5,0.75}
0 otherwise

ℋconst = {x ↦ b : b ∈ ℝ}

ĥ(x) = 1

Empirical Risk Minimization
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Hypothesis Class
Definition

A hypothesis class is a set of functions  where we will search for . 

Fixed before the learning process. 

Encodes assumptions about the relationship of  to . 

Should be easy to work with (i.e. we have efficient algorithms to search over ).

ℋ ⊆ 𝒜𝒳 h

x y

ℋ
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Risk Minimization
With a hypothesis class

The empirical risk minimizer (ERM) in  is a function  satisfying 

. 

The risk minimizer in  is a function  satisfying 

 

The Bayes hypothesis  is a function with minimal risk among all functions 

ℋ ĥ

ĥ ∈ arg min
h∈ℋ

R̂n(h)

ℋ ĥ

h*ℋ ∈ arg min
h∈ℋ

R(h)

h*

h* ∈ arg min
h

R(h)
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Excess Risk

84

ℋ
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est. error

+ R(h*ℋ) − R(h*)

approx. error

Excess Risk

85

ℋ
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Excess risk of ERM :ĥn

R(ĥn) − R(h*) = R(ĥn) − R(h*ℋ)

est. error

+ R(h*ℋ) − R(h*)

approx. error

Estimation error is from using finite training 
as a proxy for risk (a generalization issue).

Approximation error is from our choice of 
class  (a representation issue).ℋ
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Details

The estimation error  is the 
error incurred by using a finite sample  
to obtain .
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This is a random variable (why)?

Typically, when  (infinite training 
data), the estimation error goes to zero.

n → ∞

We expect that estimation error 
increases with larger .ℋ

Very rough intuition: a “variance” term.
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Details
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Details
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Details

The approximation error  is 
the error incurred by restricting to .
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Details

The approximation error  is 
the error incurred by restricting to .

R(h*ℋ) − R(h*)
ℋ

This is not a random variable (why)?

Typically, approximation error 
decreases with larger .ℋ

Very rough intuition: a “bias” term.
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Excess Risk
Intuition: Size of ℋ

 R(ĥn) − R(h*) = R(ĥn) − R(h*ℋ)

est. error

+ R(h*ℋ) − R(h*)

approx. error

ℋ

ĥn h*
h*ℋ

R(h*ℋ) − R(h*)

R(ĥn) − R(h*ℋ)

ℋ
ĥn h*

h*ℋ

R(h*ℋ) − R(h*)

R(ĥn) − R(h*ℋ)

ℋ

ĥn
h*

h*ℋ

R(h*ℋ) − R(h*)

R(ĥn) − R(h*ℋ)
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Details

But how do we search for a hypothesis 
that minimizes empirical risk? 

  

To search for one of them, we run a 
learning algorithm which typically uses a 
well-defined optimization procedure.

ĥn ∈ argmin
h∈ℋ

1
n

n

∑
i=1

ℓ(h(x(i)), y(i))

R̂n(h)

Optimization Error

ℋ

ĥn
h*

hℋ

ĥnĥn
ĥn

All functions 
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Details

We might not find the ERM . 

We instead find  via an algorithm, 
typically through optimization. 

The optimization error is the gap 
between  (which our algorithm returns) 
and  (the ERM): 

. 

ĥn ∈ ℋ

h̃n ∈ ℋ

h̃n
ĥn

R(h̃n) − R(ĥn)

Optimization Error

ℋ

ĥn
h*

hℋh̃n

All functions 
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Full Decomposition

We receive  from an algorithm. 

Excess risk of : 

 

h̃n

h̃n

R(h̃n) − R(h*) =

R(h̃n) − R(ĥn)

opt. error

+ R(ĥn) − R(h*ℋ)

est. error

+ R(h*ℋ) − R(h*)

approx. error

Excess Risk

ℋ

ĥn
h*

hℋh̃n

All functions 
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Excess Risk Formalization

1. Collect training dataset, a 
collection of labeled input-output 
pairs. 

2. Decide on the template of the 
hypothesis mapping that will map 
inputs to actions. 

3. A learning algorithm takes the 
labeled training data as input and 
outputs a hypothesis. 

4. The hypothesis predicts on new, 
unseen data which we hope it does 
well on, under a notion of loss.

Supervised Learning
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Representation

Optimization

Generalization

We receive  from an algorithm. 

Excess risk of : 

 

h̃n

h̃n

R(h̃n) − R(h*) =

R(h̃n) − R(ĥn)

opt. error

+ R(ĥn) − R(h*ℋ)

est. error

+ R(h*ℋ) − R(h*)

approx. error
RepresentationOptimization Generalization
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Three Main Questions
Representation, Optimization, and Generalization

 

 

Representation: Which hypothesis class  best models the relationship of  to ? 

Generalization: How well can we extrapolate from training data to new, unseen data? 

Optimization: How can we efficiently and accurately solve the ERM optimization problem?

R(h̃n) − R(h*) =

R(h̃n) − R(ĥn)

opt. error

+ R(ĥn) − R(h*ℋ)

est. error

+ R(h*ℋ) − R(h*)

approx. error

ℋ 𝒳 𝒜
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Choose  that balances approximation error and estimation error.ℋ

With more data, estimation error typically decreases, can use bigger .ℋ

Produce  via an algorithm that (approximately and efficiently) minimizes empirical error.h̃n
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