DS-GA 1003: Machine Learning

Lecture 2: Optimization and Gradient Descent

Slides adapted from material from David Rosenberg.



Logistics & Announcements

PS 1 due date. Next Tuesday, February 3rd 11:59 PM.

Need help? Full office hours schedule this week; Ed Discussion for questions.
Feedback? Two channels: Anonymous Feedback Form and Lab Attendance Form.
5 minute break roughly haltway.

Math Review Videos. From feedback on Lab Attendance Forms and posted on Course Content
page. First set on Bayes Hypothesis derivation and conditional expectations.

Lecture Recordings. Can be found on Brightspace => Zoom.
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Statistical Learning Setup

Formalization of Prediction Problem

T~

1. Observe aninputx € 4.  is the input space (e.g. R?, pixels, words).
2. Predictan actiona € . Y is the output space (e.g. {0,1} or R).
3. Observe the true o is the action space (e.g. prediction of y, some decision).

outcomey € ¥.
h: X — o is ahypothesis to generate action h(x).

4. Evaluate the actions in

relation to the outcome. Evaluate h with loss function : of X % — R.

£(h(x),y) evaluates h on (x, y).

R(h) =

[£(h(x),y)] is risk of A.

- (x’y)NPSl"X?



The Main Cast

Summary of the Problem

Examples from input space 2 and output space %; unknown distribution Po-, 9, over £ X ¥.

Action space & as the output (often, a prediction) ot learned hypothesis/predictor.

We evaluate actions with a loss function 7 : &/ X % — R.

Goal: Find a hypothesis h : & — & to minimize the risk R(h) := E[£(h(x), y)].

We can approximate risk with the empirical risk over sample D, = {(xV, y()), ..., (x™), y™)}:

A\

] ¢ o
2 )y ()
R, (h) - . izzl, £(h(x"), y*).



The Main Cast

Summary of the Problem

Goal: Find a hypothesis h : & — & to minimize the risk R(h) := E[£(h(x), y)].

We can approximate risk with the empirical risk over sample D, = (D, yWy L (e, yyy,

Choose a hypothesis class Z and find the empirical risk minimizer h, € #-

A 1 o
h, € argmin — ) £(h(x), y?)
he#H n i=1

R, (h)

Or find A, that approximates izn well.



The Main Cast

Summary of the Problem

Goal: Find a hypothesis h : & — & to minimize the risk R(h) := E[£(h(x), y)].

Overall quality (excess risk) of our produced £, :

R(h,) — R(h*) = R(h,) — R(h,) + R(h,) — R(h%) + R(h%) — R(h*)

Opt. error est. error approx. error

Choose # that balances approximation error and estimation error.
With more data, estimation error typically decreases, can use bigger .

Produce h, via an algorithm that (approximately and efficiently) minimizes empirical error.



Excess Risk

Full Decomposition

R(h%) — R(h*)

We receive h, from an algorithm.

Excess risk of A,
i o

R(h,) — R(h*) = S R — s

R(h,) — R(h,) + R(h,) — R(h%) + R(h%) — R(h*)

All functions

Opt. error est. error approx. error

_ i R(h,) — R(h%)



Supervised Learning

Excess Risk Formalization

1. Collect training dataset, a We receive h_ from an algorithm.
collection of labeled input-output

pairs.

Excess risk of i, :

2. Decide on the template of the Representation

hypothesis mapping that will map R(it ) — R(h*) =
inputs to outputs. &

3. A learning algorithm takes the
labeled training data as input and - - _ - _ )
outputs a hypothesis. opt. error est. error appProx. error

R(h,) — R(h,) + R(h,) — R(h%) + R(h%) — R(h*)

Optimization

4. The hypothesis predicts on new,  Generalization Optimization Generalization Representation

unseen data which we hope it does
well on, under a notion of loss.



Supervised Learning

Excess Risk Formalization

1. Collect training dataset, a We receive h, from an algorithm.
collection of labeled input-output

pailrs. | 5
Excess risk of A,

2. Decide on the template of the > .
epresentation

hypothesis mapping that will map R(it ) — R(h*) =
inputs to outputs. &

3. A learning algorithm takes the
labeled training data as input and -~ . _ 3 _ )
outputs a hypothesis. opt. error est. error approx. error

Optimization

R(h,) — R(h,) + R(h,) — R(h%) + R(h%) — R(h*)

4. The hypothesis predicts on new,  Generalization Optimization Generalization Representation

unseen data which we hope it does

. ‘ : ?
well on, under a notion of loss. How do we get a good approximation to the ERM*
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Learning as Optimization

Recurring Theme

R(h,) — R(h,) + R(h,) — R(h%) + R(h%) — R(h*)

Opt. error est. error approx. error

Estimation error: Asn — oo, typically R(itn) — R(h;;) — 0.

Approximation error: Controlled by choosing a good hypothesis class #.

Optimization error: Can we make this small using an efficient algorithm?

1 « . .
Can we solve the optimization problem: min — Z £(h(xV), y)?
hex N I

11
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Linear (Least Squares) Regression

Running Example

Input space: & = R?

Hypothesis class is parametrized by w € R?

Output space: ¥ = R Action space: &/ = % =R
Loss Function: 2(3,y) = (5 — y)?
Hypothesis Class: #Z = {h: R? = R : h(x) = w'x,w € RY)

Given dataset D, := (WD, yMy o (x™, y™)} we want to minimize the empirical risk:

n | & . . n 1
R (W) = — Z (w'x® —yD)2 or R (w) = —||Xw — y||> with X € R"™4, y € R".
n i1 n
Objective in scalar form Objective in matrix-vector form

13



Linear Regression

Examples

Predicting stock prices.

Inputs: metrics about company (earnings reports, historical prices, etc.). Output: stock price.

Predicting the weather.

Inputs: weather data, meteorological measurements. Output: tomorrow’s temperature.

Predicting sports performance.

Inputs: historical performance (batting averages, free throw percentages. Output: player score.

14



Linear Regression

Matrix-vector Form

. I & o
R,(w)=—) (wx®—y0)
& =1

— xD 5 y

X = : e R™4js the design matrixand y = | : | € R"is the output vector.

o ™ NG

15



Linear Regression

Matrix-vector Form

. & o
R,(w) == ) (wTx®—y0y
l =1

o O Wi y wTxM — y@
Xw—y= : =1 | =

e ™ | | W Y WwTx® — @

n
Therefore, || Xw — y||* = Z (w T x® — 32,
i=1

A l « . . 1
So we can always rewrite R (W) = — Z (wTx®W — y)2 = —|| Xw — y||?.
n = n

16



Linear Regression

A note on intercepts

For each i € [n], what if we want to predict: wlxl(i) + ...+ dea(li) + wy?

Solution: We add a “"dummy” 1 to each example:

W= (x0 0 D 7).

Solve problem with & = R, # = {h : R - R : h(x) = w'x,w € R} and modified
dataset D, := {ED, yMy L FED, yyy,

Minimizer will be w = Wy Wy ... w; Wy € R so w, is your intercept term.
olsy &

We can always do this without loss of generality (so focus on the 0 intercept case).



Linear Regression

Example: d = 1

—0.58
1.36
X = —
1.30 |”

—0.86

—0.30
3.16
3.29

—1.75

O
@ O
O
O
o) O
O O O
© O
¢
@ 9,
O
O
O
oo © ©@ @ O
O
O
O
-2.0 -1.5 -1.0 —-0.5 0.0 0.5 1.0 1.5 2.0




Linear Regression
Example: d =2

051 -0.53 —85.35

—-0.56 —-1.72 —121.2
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https://samuel-deng.github.io/assets/1003/lec2_regd2.html

Linear Regression

Example: Loss Surface

For a fixed dataset X € R™? and y € R”,
the loss of any w € R is:

A\

R RS R

n

R,(w) = ||Xw — yl||%.

We can visualize it with a loss surface. : ;


https://samuel-deng.github.io/assets/1003/lec2_objective.html
https://samuel-deng.github.io/assets/1003/lec2_objective.html

Linear Regression

Example: Loss Surface

30C

25(

For a fixed dataset X € R™? and y € R”,
the loss of any w € R is:

20(

N\

R RS R

n

15(

R,(w) = ||Xw — yl||%.

10(C

We can visualize it with a loss surface.

he contours of the loss surface are its
level sets L. := {w € R~ : R, (w) = c}.

—50
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Linear (Least Squares) Regression

Closed Form Solution

Given dataset D, := (WD, yMy, o (x™, y™)} we want to minimize the empirical risk:

A 1 « . . 1
R, (w) = — Z (w'x® —y)2 = —_|| Xw — y||*, where X € R™is the design matrix.
n n
i=1

Can we solve this this optimization problem?

w € argmin || Xw — y||?
weR?

22



Linear (Least Squares) Regression

Closed Form Solution

w € arg min || Xw — y||?
weR?

Analogy. How would you solve the one-dimensional optimization problem:

From elementary calculus.

w € arg min (aw — b)* ?
weR?

<e derivative, set to 0 to find candidate minimizers, and verify the

critical points are indeed mi

imizers by taking second derivatives.

23



Linear (Least Squares) Regression

Closed Form Solution

Given dataset D, := (WD, yMy, o (x™, y™)} we want to minimize the empirical risk:

A 1 « . . 1
R, (w) = — Z (w'x® —y)2 = —_|| Xw — y||*, where X € R™is the design matrix.
n n
i=1

if X € R™4 with n > d and rank(X) = d, the closed form solution is:

w=X"X)"1xTy.

24
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Linear (Least Squares) Regression

Running Example

Input space: & = R?

Hypothesis class is parametrized by w € R?

Output space: ¥ = R Action space: &/ = % =R
Loss Function: 2(3,y) = (5 — y)?
Hypothesis Class: #Z = {h: R? = R : h(x) = w'x,w € RY)

Given dataset D, := (WD, yMy o (x™, y™)} we want to minimize the empirical risk:

n | & . . n 1
R (W) = — Z (w'x® —yD)2 or R (w) = —||Xw — y||> with X € R"™4, y € R".
n i1 n
Objective in scalar form Objective in matrix-vector form

26



Linear Regression

Running Example

Given D, := {(xD,yM) . (x™, 3} we
want to minimize the empirical risk:

. 1 .
R,(w) = —[[Xw =yl

with X € R™4, y € R".

Closed-form solution: (X' X)~'Xy.

We can also solve iteratively.



https://samuel-deng.github.io/assets/1003/lec2_objective.html
https://samuel-deng.github.io/assets/1003/lec2_objective.html

Linear Regression

Running Example

Given D, := {(xD,yM) . (x™, 3} we
want to minimize the empirical risk:

. 1 ,
R,(w) = —[[Xw =yl

with X € R™4, y € R".

Closed-form solution: (X' X)~'Xy.

We can also solve iteratively.

28
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Unconstrained Optimization
Setting

min F(w)
weR?

where we assume the objective function F : RY — R is differentiable.

Goal: Given an objective function F, find the w that makes F(w) as small as possible.

29



Unconstrained Optimization
Setting

min F(w)
weR?

where we assume the objective function F : R? — R is differentiable.

1 « . . 1
Example: Linear regression ERM objective: min — Z (w'xW —y)2 = — || Xw — y]||?
n

weR4 n 4
=1

Objective function F(w)

30



A candidate algorithm

Moving in steepest descent direction

minimize F(w)
weR

Suppose | drop you off at w = — 0.5.
Oratw = 2.

Which direction to go in to decrease F?
it slope is negative, go right.

It slope is positive, go left.

F(w)




A candidate algorithm

Moving in steepest descent direction

minimize F(w)
weR

Suppose | drop you off at w = — 0.5.
Oratw = 2.

Which direction to go in to decrease F?
Follow the derivative (slope at a point)!
Repeat over and over to minimize.

Eventually, we might reach a minimum!

F(w)




A candidate algorithm

Moving in steepest descent direction

minimize F(w)
weR

But we can also just minimize in one shot!
F'iw)=20

(first order condition)

Not always possible (e.qg. logistic
regression, neural networks, etc.), so we
need an iterative algorithm.

F(w)




A candidate algorithm

Moving in steepest descent direction

minimize F(w) 2
weR? :
. . . . . 2
Infinitely many directions now ind > 2...
¢ AP
But still can go in the “steepest decrease” 3
direction! *
Wh E 02
E 9 2
: AD 7.5
E / B\ Os
Wi . N 0
w1 . v w2



https://samuel-deng.github.io/assets/1003/lec2_descentdir.html
https://samuel-deng.github.io/assets/1003/lec2_descentdir.html

A candidate algorithm

Moving in steepest descent direction

minimize F(w)
weR?

Infinitely many directions now ind > 2...

But still can go in the “steepest decrease”
direction!

x

1)




A candidate algorithm

Moving in steepest descent direction

minimize F(w)
weR?

F (Wla Wz)

This “greedy” strategy works for arbitrarily B
complex functions.

1)




A candidate algorithm

Moving in steepest descent direction

minimize F(w)
weR?

F (Wp Wz)

This “"greedy” strategy works for arbitrarily
complex functions.

x

1)




A candidate algorithm

Moving in steepest descent direction

Start at some arbitrary point w) € R4

Step in the direction of steepest decrease
tfor F(w)...

Take another step in the direction of
steepest decrease for F(w)...

Repeat until satistied.




A candidate algorithm

Moving in steepest descent direction

Start at some arbitrary point w) € R4

Step in the direction of steepest decrease
tfor F(w)...

...KZ.N\.\";\,.,‘............................

Take another step in the direction of
steepest decrease for F(w)...

Repeat until satistied.


https://samuel-deng.github.io/assets/1003/lec2_nonconvex_surface_gd.html
https://samuel-deng.github.io/assets/1003/lec2_nonconvex_surface_gd.html
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A candidate algorithm
Moving in steepest descent direction
Start at some arbitrary point w) € R¢.
Step in the direction of steepest decrease 0
tfor F(w)...
Take another step in the direction of &
steepest decrease for F(w)... o
Repeat until satisfied. N
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Gradient

Review

The gradient of Fatu € R%is a vector
VFu) € R

OF OF
V F(wy) = (awl W, ..., awd(”)>

It is the direction F increases the fastest at
a fixed point u.

26(
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16(

14(
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Gradient

The direction of steepest ascent (Why?)

Steepest increase direction?

Recall: directional derivative is the rate of

change of F in direction v € R?

VTVF(W) = ||lv
|

VF(w) A

Vv

VF(w)

VF(w)|| cos@
=1

Maximized when 8 = 0,

i.e. when vis exactly in VF(w) direction!



Gradient Descent
Algorithm

Initialize at a randomly chosen w® € R4
For iteration t = 1,2,... (until “stopping condition” is satistied):

Return final w®, with objective value F(w).

50



Gradient Descent
Stopping Condition

For iteration t = 1,2,... (until “stopping condition” is satistied):

Typically:
Until ||VFWD)|| < e (recall: VAw) = 0 ata minimum).
In practice, with validation data, can implement early stopping:

Evaluate pertormance on validation as you go, stop when no longer improving.

51



Gradient Descent
Step Size

The step size/learning rate of gradient descent is a positive numbern > 0.

A fixed step size will work as long as it is small enough.

n too large: optimization might diverge.

n too small: optimization might take a long time.

In practice, can make sense to try several fixed step sizes or decaying step sizes 7,

What properties of I relate to how large/small a step to take?

52



Differential Calculus

Review: Derivative

f F: RY > R is differentiable, then for any u € R4

Linear approximation of F at point u.

. Fw)—(F(u) + (VF(u),w — u))
lim —

w—u ”W — uH

0

At any point u € R¢ F(w) = F(u) + {( VF(u),w — u) for all w close to u.



Differential Calculus

Review: Derivative

f F: RY > R is differentiable, then for
any u € R?

. Fw) = (F(u) + (VEW),w — u))
lim —

w—u HW — I/tH

At any point u € R¢
Fw)~ F(u) + {(VF(u),w — u) for all w
close to u.

0

54
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Differential Calculus

Review: Derivative

f F: R?Y > R is differentiable, then for
any u € R¢

. F(w) — (F(uw) + (VFu),w — u))
lim —

w—u HW — I/tH

At any point u € R¢
Fiw)~ F(u) + (VF(u),w — u) for all w
close to u.

0

55



Gradient Descent

Rough Derivation

Given u € R with objective F(u), how do we change u to make F smaller?

Fw) =~ F(u) + VF(u)'(w — u), as long as w is close to u.

For any direction § € R with small ||5]|:
Fu+8)~Fu)+VFwW)'u+é—u)=Fu+0d6 ~Fu)+VFu)'s
So,if 0 = —nVF(u), we should have:

F(u—nVF®u)) ~ F(u) — n||VFw)||* as long as  is small.

56



Lipschitz & Smoothness

Definition

Lipschitzness: “"function doesn’t change too much”

A function F : R? = R is a Lipschitz continuous with constant L > 0 if

[F(x) = F(n)II < Lilx = yl|.

A function F : R - R is a L-smooth if VF is Lipschitz continuous:

[VE(Xx) = VFO)| < [lx =yl forall x, y.

It twice-ditterentiable, F'is L-smooth it the eigenvalues of its Hessian are at most L.

(V2F(x)) < L.

/lmax

57



Gradient Descent Guarantees

Theorem 1: Descent Lemma

Theorem (Descent Lemma).

It F'is "smooth enough,” then there is a choice of # > 0 such that, forany w &€ R4

F(w — nVE(w)) < F(w) — guvszm%

"Smooth enough” : Fis an L-smooth function.

Taylor's Theorem: makes the = rigorous!




Gradient Descent Guarantees

Theorem 1: Descent Lemma

Theorem (Descent Lemma).

f Fis continuously twice-differentiable and L-smooth for any w € R¢,
1
Fw—=nVFWw)) < F(w) — EHVF(W)H2

whenn < 1/L.



Gradient Descent

Example: Linear Regression

min — || Xw — y||*
weR? n

where X € R™4 y € R”

Gradient descent:

2
w® =D _ 7 - _XT(XW —y)
n

60



Gradient Descent

Example: Linear Regression

Initialize at a randomly chosen w¥ € R4

For iterationt = 1,2,...,T:

2
w® — wlt=b . —XT(Xw —y)
n

Return final w').

w2 wi



10

Gradient Descent

Example: Linear Regression

26(

24(

22(

ul

20(

Initialize at a randomly chosen w¥ € R4

18(
16(

For iterationt = 1,2,...,T:

14(

o

2
w® — = 4. ;XT(XW —y)

Return final w).

—20




Descent Lemma

Guarantee (Informal)

It nis small enough, then the gradient
descent update rule

w® — =D _ Y FpD)
has the property:

Fw®) S Fw"=Dy — »||VEW" D)%

w2 wi



Descent Lemma

Guarantee (Informal)

f 7 is small enough, then the gradient &
descent update rule

w® — W=D _ g Fop=D) — )V FowDy| 2
2

has the property:

Fow") 5 Fow'"=D) = n|[VFw" D))", :

w2 wi



Descent Lemma

Guarantee (Informal)

It nis small enough, then the gradient
descent update rule

w® — =D _ Y FpD)
has the property:

Fw®) S Fw"=Dy — »||VEW" D)%




Descent Lemma

Guarantee (Informal)

It 7 is small enough, then the gradient
descent update rule

has the property:

Fw®) S Fw"=Dy — »||VEW" D)%

When 7 is too large, all bets are off —
gradient descent may diverge!



https://samuel-deng.github.io/assets/1003/lec2_badgd.html
https://samuel-deng.github.io/assets/1003/lec2_badgd.html

Descent Lemma

Guarantee (Informal)

It 7 is small enough, then the gradient

descent update rule £
w® — =D _ ﬂVF(W(t_l))
has the property: Y

Fw®) S Fw"=Dy — »||VEW" D)%



https://samuel-deng.github.io/assets/lec/nonconvex_surface_gd.html
https://samuel-deng.github.io/assets/lec/nonconvex_surface_gd.html

Descent Lemma

Guarantee (Informal)

It 7 is small enough, then the gradient ,
descent update rule s

w® — =D _ Y FpD)
has the property:

Fw®) S Fw"=Dy — »||VEW" D)%

But this can mean getting stuck in a local f " T
minimum!


https://samuel-deng.github.io/assets/1003/lec2_nonconvex_stuck.html
https://samuel-deng.github.io/assets/1003/lec2_nonconvex_stuck.html

Descent Lemma

Guarantee (Informal)

It nis small enough, then the gradient
descent update rule

w® — = _ ﬂVF(W(t_l))
has the property:

Fw®) 5 Fiw"D) — || VEW" )|~

But this can mean getting stuck in a local
minimum!

F(w)
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Stationary Points
What can happen at VF(x) = 0?

When VF(x) = 0, you can have stationary
points that are:

Local minima.
L ocal maxima.
Global maximum.

Global minimum.

/1



Convex Function

Intuition

A convex function
"bowl-shaped.”

All line segments t

lie above the functi

f differentiable, all

Is a function that is

nrough any two points

on.

linear approximations

ie below the function.

72

This function is convex.




Convex Function

Intuition

A convex function
"bowl-shaped.”

All line segments t

lie above the functi

f differentiable, all

Is a function that is

nrough any two points

on.

linear approximations

ie below the function.

73

This function is convex.




Convex Function

Intuition

A convex function
"bowl-shaped.”

All line segments t

lie above the functi

f differentiable, all

Is a function that is

nrough any two points

on.

linear approximations

ie below the function.

v

v

74

This function is NOT convex.




Gradient Descent Guarantee

Convex, Smooth Functions

Theorem (GD on Convex, Smooth Functions).

f F: RY > R is convex, differentiable, and L-smooth, then gradient descent withn < 1/L

converges:
[w® — w*||?

2nT

Fiw)y — F(w*) < after T steps.
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Gradient Descent

Example: Least Squares Regression

Theorem. If F : R¢ —» R is convex,

differentiable, and L-smooth, then gradient
descent with n < 1/L converges: 0

[w® — wH|) "\

after T steps.

Fw'™") — F(w*) <

2nT

The “classical ML’ part of this course will mainly >
be concerned with convex objectives, where we
have nice guarantees about optimization. " "
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Notes on Convergence
Step Size

...gradient descent with n < 1/L converges.
Fixed step size works as long as it is small enough.
No guarantees (may diverge) it step sizes are too big.

Intuition from theorem: allowable step sizes are sensitive to the “change in the derivative.”

F:R? > RisaL-smooth if VFis Lipschitz continuous:

[VF(x) = VFO)| < [[x =yl forallx, y.
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Notes on Computation

Scalability Issues

Recall our main problem ot empirical risk minimization (ERM):

min — Z £(h(xD), yD),

heZ N
HypothesisClass: Z = {h,: X — Y :w & R?} (e.g. linear functions)

Given dataset D, := (W, yMy, L (x™, y™)} we want to minimize the empirical risk:

Va\

] & . .
R, (w) = — 2} £(h, (x0), y®)
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Notes on Computation

Scalability Issues

A\

] <« . .
R,w) == ) £(h,xD),y?)
s
I f(hw(x(i)),y(i)) is differentiable as function of w, we can do gradient descent on ﬁn(w).

A | . .
Example: R (w) = — Z (w T x@ — y0)2
iz

At every step, we need to compute the gradient at the current w:

A\

1 < . .
VR,w) == ) V,E(h,xD),y0)
& =1
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Outline

ERM: Learning as Optimization
Optimizing Linear Regression: Closed Form

Gradient Descent Intuition & Example

Gradient Descent Algorithm & Descent Lemma
Gradient Descent on Convex Functions

Stochastic Gradient Descent
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Stochastic Gradient Descent

Intuition

Issue: At every step, we need to compute the gradient at the current w:

A

& .
VR,w) == ) V,Z(h,xD),y0)
& =1

Claim: If we choose j € [n] uniformly at random, then:

=il wa(hw(x(j)), y)] = VR\n(W).

The estimate wa(hw(x(j)),y(j)) is a stochastic gradient.
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Stochastic GD

Algorithm

Initialize at a randomly chosen w® € R4

For iteration t = 1,2,... (until “stopping
condition” is satistied):

Choose j € [n] uniformly at random.

w® W=D _ v £(h (xD), yO)

Move in direction of steepest descent in
expectation.
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Stochastic GD

Algorithm

30C

25(

Initialize at a randomly chosen w'¥ € R¢.

20(

For iteration t = 1,2,... (until “stopping
condition” is satisfied):

15C

Choose j € [n] uniformly at random.

10(C

—50

Computation: O(d) instead of O(nd) per step
because only needs to touch single point.
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Stochastic GD

Main Difference

30C

25(

Stochastic gradient descent: More
iterations to reach minimum, but lower
cost per iteration.

20(

Gradient descent: Fewer iterations to
reach minimum, but higher cost per
Iiteration.

15C

10(C

—50
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Stochastic GD

Main Difference

Common (“rule of thumb”) behavior:

Stochastic gradient descent: More
iterations to reach minimum, but lower
cost per Iiteration.

Gradient descent: Fewer iterations to
reach minimum, but higher cost per
Iiteration.
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Minibatch Gradient Descent
SGD in Practice

A 1 « N
Full gradient: VR, (w) = — Z V., £(h (x9D), y®)
=l

This is an average over the full batch of data D, = (D, yWy (™, y)),

Take a random subsample of size N called a minibatch: (N = 1 is stochastic gradient descent)

(x0m), ), L (x0), )

. <
Minibatch gradient: VR, (w) = ~ z V., £ (h, (x), y(m)
i=1
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Minibatch Gradient

Properties

A ]
VRN = DV, &), )

=1

1.IA€N(W) IS an unbiased estimator.

_(ml,...,mN)[ViéN(W)] — Vjén(w)

2. IAQN(W) s a better estimate with a bigger minibatch.

Var

VR (w)

1 N
— Var | — V. A(h x(mi) , (m;)
Y ;:1' wC (M, (X7), y )}
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Minibatch GD

Comparison

Minibatch G

D tends to need fewer

iterations to converge than SGD.

Price per iteration is O(Nd), where N
is the minibatch size.

Typically, N < n delivers good
performance.

On modern hardware, small

minibatch sizes N &~ 32 come "for
free” because of parallelization.
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Notes on Convergence

Stochastic Gradient Descent

For convergence guarantees, can use diminishing step sizes, e.g.n, = 1/t.
Theoretically, GD is much taster than SGD in terms of convergence rate:

But much more computationally costly to compute a single step.

Most advantage of GD over SGD comes into play once we're close to minimum.
In many ML problems, we don’t care about optimizing close to minimum.
In practice, SGD with fixed step size can work well.

Typical approach: step size reduced by constant factor when validation performance stalls.
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Supervised Learning

Excess Risk Formalization

1. Collect training dataset, a We receive h, from an algorithm.
collection of labeled input-output

pailrs. | 5
Excess risk of A,

2. Decide on the template of the > .
epresentation

hypothesis mapping that will map R(it ) — R(h*) =
inputs to outputs. &

3. A learning algorithm takes the
labeled training data as input and -~ . _ 3 _ )
outputs a hypothesis. opt. error est. error approx. error

Optimization

R(h,) — R(h,) + R(h,) — R(h%) + R(h%) — R(h*)

4. The hypothesis predicts on new,  Generalization Optimization Generalization Representation

unseen data which we hope it does

. ‘ : ?
well on, under a notion of loss. How do we get a good approximation to the ERM*
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Descent
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