
DS-GA 1003: Machine Learning
Lecture 2: Optimization and Gradient Descent

1

Slides adapted from material from David Rosenberg.

Logistics & Announcements

PS 1 due date. Next Tuesday, February 3rd 11:59 PM.

Need help? Full office hours schedule this week; Ed Discussion for questions.

Feedback? Two channels: Anonymous Feedback Form and Lab Attendance Form.

5 minute break roughly halfway.

Math Review Videos. From feedback on Lab Attendance Forms and posted on Course Content
page. First set on Bayes Hypothesis derivation and conditional expectations.

Lecture Recordings. Can be found on Brightspace => Zoom.

2

Outline

ERM: Learning as Optimization

Optimizing Linear Regression: Closed Form

Gradient Descent Intuition & Example

Gradient Descent Algorithm & Descent Lemma

Gradient Descent on Convex Functions

Stochastic Gradient Descent

3

Statistical Learning Setup
Formalization of Prediction Problem

1. Observe an input .

2. Predict an action .

3. Observe the true
outcome .

4. Evaluate the actions in
relation to the outcome.

x ∈ 𝒳

a ∈ 𝒜

y ∈ 𝒴

4

 is the input space (e.g. , pixels, words).

 is the output space (e.g. or).

 is the action space (e.g. prediction of , some decision).

 is a hypothesis to generate action .

Evaluate with loss function .

 evaluates on .

 is risk of .

𝒳 ℝd

𝒴 {0,1} ℝ

𝒜 y

h : 𝒳 → 𝒜 h(x)

h ℓ : 𝒜 × 𝒴 → ℝ

ℓ(h(x), y) h (x, y)

R(h) = 𝔼(x,y)∼P𝒳×𝒴
[ℓ(h(x), y)] h

The Main Cast
Summary of the Problem

Examples from input space and output space ; unknown distribution over .

Action space as the output (often, a prediction) of learned hypothesis/predictor.

We evaluate actions with a loss function .

Goal: Find a hypothesis to minimize the risk .

We can approximate risk with the empirical risk over sample :

.

𝒳 𝒴 P𝒳×𝒴 𝒳 × 𝒴

𝒜

ℓ : 𝒜 × 𝒴 → ℝ

h : 𝒳 → 𝒜 R(h) := 𝔼[ℓ(h(x), y)]

Dn = {(x(1), y(1)), …, (x(n), y(n))}

R̂n(h) :=
1
n

n

∑
i=1

ℓ(h(x(i)), y(i))

5

The Main Cast
Summary of the Problem

Goal: Find a hypothesis to minimize the risk .

We can approximate risk with the empirical risk over sample .

Choose a hypothesis class and find the empirical risk minimizer :

Or find that approximates well.

h : 𝒳 → 𝒜 R(h) := 𝔼[ℓ(h(x), y)]

Dn = {(x(1), y(1)), …, (x(n), y(n))}

ℋ ĥn ∈ ℋ

ĥn ∈ argmin
h∈ℋ

1
n

n

∑
i=1

ℓ(h(x(i)), y(i))

R̂n(h)

h̃n ĥn

6

The Main Cast
Summary of the Problem

Goal: Find a hypothesis to minimize the risk .

Overall quality (excess risk) of our produced :

Choose that balances approximation error and estimation error.

With more data, estimation error typically decreases, can use bigger .

Produce via an algorithm that (approximately and efficiently) minimizes empirical error.

h : 𝒳 → 𝒜 R(h) := 𝔼[ℓ(h(x), y)]

h̃n

R(h̃n) − R(h*) = R(h̃n) − R(ĥn)

opt. error

+ R(ĥn) − R(h*ℋ)

est. error

+ R(h*ℋ) − R(h*)

approx. error

ℋ

ℋ

h̃n

7

Full Decomposition

We receive from an algorithm.

Excess risk of :

h̃n

h̃n

R(h̃n) − R(h*) =

R(h̃n) − R(ĥn)

opt. error

+ R(ĥn) − R(h*ℋ)

est. error

+ R(h*ℋ) − R(h*)

approx. error

Excess Risk

ℋ

ĥn
h*

hℋh̃n

All functions

8

R(h̃n) − R(ĥn)

R(h*ℋ) − R(h*)

R(ĥn) − R(h*ℋ)

Excess Risk Formalization

1. Collect training dataset, a
collection of labeled input-output
pairs.

2. Decide on the template of the
hypothesis mapping that will map
inputs to outputs.

3. A learning algorithm takes the
labeled training data as input and
outputs a hypothesis.

4. The hypothesis predicts on new,
unseen data which we hope it does
well on, under a notion of loss.

Supervised Learning

9

Representation

Optimization

Generalization

We receive from an algorithm.

Excess risk of :

h̃n

h̃n

R(h̃n) − R(h*) =

R(h̃n) − R(ĥn)

opt. error

+ R(ĥn) − R(h*ℋ)

est. error

+ R(h*ℋ) − R(h*)

approx. error
RepresentationOptimization Generalization

Excess Risk Formalization

1. Collect training dataset, a
collection of labeled input-output
pairs.

2. Decide on the template of the
hypothesis mapping that will map
inputs to outputs.

3. A learning algorithm takes the
labeled training data as input and
outputs a hypothesis.

4. The hypothesis predicts on new,
unseen data which we hope it does
well on, under a notion of loss.

Supervised Learning

10

Representation

Optimization

Generalization

We receive from an algorithm.

Excess risk of :

h̃n

h̃n

R(h̃n) − R(h*) =

R(h̃n) − R(ĥn)

opt. error

+ R(ĥn) − R(h*ℋ)

est. error

+ R(h*ℋ) − R(h*)

approx. error
RepresentationOptimization Generalization

How do we get a good approximation to the ERM?

Learning as Optimization
Recurring Theme

Estimation error: As , typically .

Approximation error: Controlled by choosing a good hypothesis class .

Optimization error: Can we make this small using an efficient algorithm?

Can we solve the optimization problem: ?

R(h̃n) − R(ĥn)

opt. error

+ R(ĥn) − R(h*ℋ)

est. error

+ R(h*ℋ) − R(h*)

approx. error

n → ∞ R(ĥn) − R(h*ℋ) → 0

ℋ

min
h∈ℋ

1
n

n

∑
i=1

ℓ(h(x(i)), y(i))

11

Outline

ERM: Learning as Optimization

Optimizing Linear Regression: Closed Form

Gradient Descent Intuition & Example

Gradient Descent Algorithm & Descent Lemma

Gradient Descent on Convex Functions

Stochastic Gradient Descent

12

Linear (Least Squares) Regression
Running Example

Input space:

Output space: Action space:

Loss Function:

Hypothesis Class:

Given dataset we want to minimize the empirical risk:

 or with , .

𝒳 = ℝd

𝒴 = ℝ 𝒜 = 𝒴 = ℝ

ℓ(̂y, y) = (̂y − y)2

ℋ = {h : ℝd → ℝ : h(x) = w⊤x, w ∈ ℝd}

Dn := {(x(1), y(1)), …, (x(n), y(n))}

R̂n(w) =
1
n

n

∑
i=1

(w⊤x(i) − y(i))2 R̂n(w) =
1
n

∥Xw − y∥2 X ∈ ℝn×d y ∈ ℝn

13

Hypothesis class is parametrized by w ∈ ℝd

Objective in scalar form Objective in matrix-vector form

Linear Regression
Examples

Predicting stock prices.

Inputs: metrics about company (earnings reports, historical prices, etc.). Output: stock price.

Predicting the weather.

Inputs: weather data, meteorological measurements. Output: tomorrow’s temperature.

Predicting sports performance.

Inputs: historical performance (batting averages, free throw percentages. Output: player score.

⋮

14

Linear Regression
Matrix-vector Form

 is the design matrix and is the output vector.

R̂n(w) =
1
n

n

∑
i=1

(w⊤x(i) − y(i))2

X =
← x(1) →

⋮
← x(n) →

∈ ℝn×d y =
y(1)

⋮
y(n)

∈ ℝn

15

Linear Regression
Matrix-vector Form

Therefore, .

So we can always rewrite .

R̂n(w) =
1
n

n

∑
i=1

(w⊤x(i) − y(i))2

Xw − y =
← x(1) →

⋮
← x(n) →

w1
⋮
wd

−
y(1)

⋮
y(n)

=
w⊤x(1) − y(1)

⋮
w⊤x(n) − y(n)

∥Xw − y∥2 =
n

∑
i=1

(w⊤x(i) − y(i))2

R̂n(w) =
1
n

n

∑
i=1

(w⊤x(i) − y(i))2 =
1
n

∥Xw − y∥2

16

Linear Regression
A note on intercepts

For each , what if we want to predict: ?

Solution: We add a “dummy” to each example:

.

Solve problem with , and modified
dataset .

Minimizer will be , so is your intercept term.

We can always do this without loss of generality (so focus on the intercept case).

i ∈ [n] w1x(i)
1 + … + wdx(i)

d + w0

1

x̃(i) = (x(i)
1 x(i)

2 … x(i)
d 1)

𝒳 = ℝd+1 ℋ = {h : ℝd+1 → ℝ : h(x) = w⊤x, w ∈ ℝd+1}
Dn := {(x̃(1), y(1)), …, (x̃(n), y(n))}

w̃ = (w1 w2 … wd w0) ∈ ℝd+1 w0

0

Linear Regression
Example: d = 1

X =

⋮
−0.58
1.36
1.30

−0.86
⋮

y =

⋮
−0.30
3.16
3.29

−1.75
⋮

Linear Regression
Example: d = 2

X =

⋮ ⋮
0.51 −0.53

−0.56 −1.72
−0.57 −0.99
1.54 0.36

⋮ ⋮

y =

⋮
−85.35
−121.2
−46.14
154.72

⋮

https://samuel-deng.github.io/assets/1003/lec2_regd2.html

Example: Loss Surface

For a fixed dataset and ,
the loss of any is:

.

We can visualize it with a loss surface.

X ∈ ℝn×2 y ∈ ℝn

w ∈ ℝ2

R̂n : ℝ2 → ℝ

R̂n(w) = ∥Xw − y∥2

Linear Regression

20

https://samuel-deng.github.io/assets/1003/lec2_objective.html
https://samuel-deng.github.io/assets/1003/lec2_objective.html

Example: Loss Surface

For a fixed dataset and ,
the loss of any is:

.

We can visualize it with a loss surface.

The contours of the loss surface are its
level sets .

X ∈ ℝn×2 y ∈ ℝn

w ∈ ℝ2

R̂n : ℝ2 → ℝ

R̂n(w) = ∥Xw − y∥2

Lc := {w ∈ ℝ2 : R̂n(w) = c}

−10 −5 0 5 10−10

−5

0

5

10

50

100

150

200

250

300
Linear Regression

21

Linear (Least Squares) Regression
Closed Form Solution

Given dataset we want to minimize the empirical risk:

 , where is the design matrix.

Can we solve this this optimization problem?

Dn := {(x(1), y(1)), …, (x(n), y(n))}

R̂n(w) =
1
n

n

∑
i=1

(w⊤x(i) − y(i))2 =
1
n

∥Xw − y∥2 X ∈ ℝn×d

w ∈ arg min
w∈ℝd

∥Xw − y∥2

22

Linear (Least Squares) Regression
Closed Form Solution

Analogy. How would you solve the one-dimensional optimization problem:

 ?

From elementary calculus. Take derivative, set to to find candidate minimizers, and verify the
critical points are indeed minimizers by taking second derivatives.

w ∈ arg min
w∈ℝd

∥Xw − y∥2

w ∈ arg min
w∈ℝd

(aw − b)2

0

23

Linear (Least Squares) Regression
Closed Form Solution

Given dataset we want to minimize the empirical risk:

 , where is the design matrix.

If with and , the closed form solution is:

.

Dn := {(x(1), y(1)), …, (x(n), y(n))}

R̂n(w) =
1
n

n

∑
i=1

(w⊤x(i) − y(i))2 =
1
n

∥Xw − y∥2 X ∈ ℝn×d

X ∈ ℝn×d n ≥ d rank(X) = d

ŵ = (X⊤X)−1X⊤y

24

Outline

ERM: Learning as Optimization

Optimizing Linear Regression: Closed Form

Gradient Descent Intuition & Example

Gradient Descent Algorithm & Descent Lemma

Gradient Descent on Convex Functions

Stochastic Gradient Descent

25

Linear (Least Squares) Regression
Running Example

Input space:

Output space: Action space:

Loss Function:

Hypothesis Class:

Given dataset we want to minimize the empirical risk:

 or with , .

𝒳 = ℝd

𝒴 = ℝ 𝒜 = 𝒴 = ℝ

ℓ(̂y, y) = (̂y − y)2

ℋ = {h : ℝd → ℝ : h(x) = w⊤x, w ∈ ℝd}

Dn := {(x(1), y(1)), …, (x(n), y(n))}

R̂n(w) =
1
n

n

∑
i=1

(w⊤x(i) − y(i))2 R̂n(w) =
1
n

∥Xw − y∥2 X ∈ ℝn×d y ∈ ℝn

26

Hypothesis class is parametrized by w ∈ ℝd

Objective in scalar form Objective in matrix-vector form

Running Example

Given we
want to minimize the empirical risk:

with , .

Closed-form solution: .

We can also solve iteratively.

Dn := {(x(1), y(1)), …, (x(n), y(n))}

R̂n(w) =
1
n

∥Xw − y∥2

X ∈ ℝn×d y ∈ ℝn

(X⊤X)−1X⊤y

Linear Regression

27

https://samuel-deng.github.io/assets/1003/lec2_objective.html
https://samuel-deng.github.io/assets/1003/lec2_objective.html

Running Example

Given we
want to minimize the empirical risk:

with , .

Closed-form solution: .

We can also solve iteratively.

Dn := {(x(1), y(1)), …, (x(n), y(n))}

R̂n(w) =
1
n

∥Xw − y∥2

X ∈ ℝn×d y ∈ ℝn

(X⊤X)−1X⊤y

Linear Regression

28

−10 −5 0 5 10−10

−5

0

5

10

50

100

150

200

250

300

Unconstrained Optimization
Setting

where we assume the objective function is differentiable.

Goal: Given an objective function , find the that makes as small as possible.

min
w∈ℝd

F(w)

F : ℝd → ℝ

F w F(w)

29

Unconstrained Optimization
Setting

where we assume the objective function is differentiable.

Example: Linear regression ERM objective:

min
w∈ℝd

F(w)

F : ℝd → ℝ

min
w∈ℝd

1
n

n

∑
i=1

(w⊤x(i) − y(i))2 =
1
n

∥Xw − y∥2

30

Objective function F(w)

Moving in steepest descent direction

Suppose I drop you off at .

Or at .

Which direction to go in to decrease ?

If slope is negative, go right.

If slope is positive, go left.

minimize
w∈ℝ

F(w)

w = − 0.5

w = 2

F

−4 −3 −2 −1 0 1 2 3−5

−4

−3

−2

−1

0

1

2

3

4

5A candidate algorithm

Moving in steepest descent direction

Suppose I drop you off at .

Or at .

Which direction to go in to decrease ?

Follow the derivative (slope at a point)!

Repeat over and over to minimize.

Eventually, we might reach a minimum!

minimize
w∈ℝ

F(w)

w = − 0.5

w = 2

F

−4 −3 −2 −1 0 1 2 3−5

−4

−3

−2

−1

0

1

2

3

4

5A candidate algorithm

Moving in steepest descent direction

But we can also just minimize in one shot!

(first order condition)

Not always possible (e.g. logistic
regression, neural networks, etc.), so we

need an iterative algorithm.

minimize
w∈ℝ

F(w)

F′￼(w) = 0

−4 −3 −2 −1 0 1 2 3−5

−4

−3

−2

−1

0

1

2

3

4

5A candidate algorithm

Moving in steepest descent direction

Infinitely many directions now in …

But still can go in the “steepest decrease”
direction!

minimize
w∈ℝd

F(w)

d ≥ 2

A candidate algorithm

w1

w2

https://samuel-deng.github.io/assets/1003/lec2_descentdir.html
https://samuel-deng.github.io/assets/1003/lec2_descentdir.html

Moving in steepest descent direction

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2

3

4

5

6

7

8

9A candidate algorithm

Infinitely many directions now in …

But still can go in the “steepest decrease”
direction!

minimize
w∈ℝd

F(w)

d ≥ 2

w1

w2

Moving in steepest descent direction

This “greedy” strategy works for arbitrarily
complex functions.

minimize
w∈ℝd

F(w)

F(w1, w2)

A candidate algorithm

w1

w2

Moving in steepest descent direction

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

8A candidate algorithm

This “greedy” strategy works for arbitrarily
complex functions.

minimize
w∈ℝd

F(w)

F(w1, w2)

w1

w2

Moving in steepest descent direction

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

8A candidate algorithm

Start at some arbitrary point .

Step in the direction of steepest decrease
for …

Take another step in the direction of
steepest decrease for …

Repeat until satisfied.

w(0) ∈ ℝd

F(w)

F(w)

⋮

Moving in steepest descent direction
A candidate algorithm

Start at some arbitrary point .

Step in the direction of steepest decrease
for …

Take another step in the direction of
steepest decrease for …

Repeat until satisfied.

w(0) ∈ ℝd

F(w)

F(w)

⋮

https://samuel-deng.github.io/assets/1003/lec2_nonconvex_surface_gd.html
https://samuel-deng.github.io/assets/1003/lec2_nonconvex_surface_gd.html

−10 −5 0 5 10−10

−5

0

5

10

20

40

60

80

100

120

140

160

180

200

220

240

260

T = 0

−10 −5 0 5 10−10

−5

0

5

10

20

40

60

80

100

120

140

160

180

200

220

240

260

T = 10

−10 −5 0 5 10−10

−5

0

5

10

20

40

60

80

100

120

140

160

180

200

220

240

260

T = 20

−10 −5 0 5 10−10

−5

0

5

10

20

40

60

80

100

120

140

160

180

200

220

240

260

T = 25

−10 −5 0 5 10−10

−5

0

5

10

20

40

60

80

100

120

140

160

180

200

220

240

260

T = 30

−10 −5 0 5 10−10

−5

0

5

10

20

40

60

80

100

120

140

160

180

200

220

240

260

T = 100

Moving in steepest descent direction
A candidate algorithm

Start at some arbitrary point .

Step in the direction of steepest decrease
for …

Take another step in the direction of
steepest decrease for …

Repeat until satisfied.

w(0) ∈ ℝd

F(w)

F(w)

⋮

−10 −5 0 5 10−10

−5

0

5

10

20

40

60

80

100

120

140

160

180

200

220

240

260

Outline

ERM: Learning as Optimization

Optimizing Linear Regression: Closed Form

Gradient Descent Intuition & Example

Gradient Descent Algorithm & Descent Lemma

Gradient Descent on Convex Functions

Stochastic Gradient Descent

47

Review

The gradient of at is a vector
:

It is the direction increases the fastest at
a fixed point .

F u ∈ ℝd

∇F(u) ∈ ℝd

∇F(w0) := (∂F
∂w1

(u), …,
∂F
∂wd

(u))

F
u

Gradient

48

−10 −5 0 5 10−10

−5

0

5

10

20

40

60

80

100

120

140

160

180

200

220

240

260

Gradient
The direction of steepest ascent (Why?)

Steepest increase direction?

w1

w2

∇F(w)

Recall: directional derivative is the rate of
change of in direction F v ∈ ℝd

∇F(w)

v

θ

v⊤ ∇F(w) = ∥v∥∥∇F(w)∥ cos θ

∥v∥ = 1
Maximized when ,

i.e. when is exactly in direction!
θ = 0

v ∇F(w)

Gradient Descent
Algorithm

Initialize at a randomly chosen .

For iteration (until “stopping condition” is satisfied):

Return final , with objective value .

w(0) ∈ ℝd

t = 1,2,…

w(t) ← w(t−1) − η∇F(w(t−1))

w(t) F(w(t))

50

Gradient Descent
Stopping Condition

For iteration (until “stopping condition” is satisfied):

Typically:

Until (recall: at a minimum).

In practice, with validation data, can implement early stopping:

Evaluate performance on validation as you go, stop when no longer improving.

t = 1,2,…

w(t) ← w(t−1) − η∇F(w(t−1))

∥∇f(w(t))∥ ≤ ϵ ∇f(w) = 0

51

Gradient Descent
Step Size

The step size/learning rate of gradient descent is a positive number .

A fixed step size will work as long as it is small enough.

 too large: optimization might diverge.

 too small: optimization might take a long time.

In practice, can make sense to try several fixed step sizes or decaying step sizes .

What properties of relate to how large/small a step to take?

w(t) ← w(t−1) − η∇F(w(t−1))

η > 0

η

η

ηt

F

52

Differential Calculus
Review: Derivative

If is differentiable, then for any ,

At any point , for all close to .

F : ℝd → ℝ u ∈ ℝd

lim
w→u

F(w) − (F(u) + ⟨∇F(u), w − u⟩)
∥w − u∥

= 0

u ∈ ℝd F(w) ≈ F(u) + ⟨∇F(u), w − u⟩ w u

Linear approximation of at point .F u

Review: Derivative

If is differentiable, then for
any ,

At any point ,
 for all

close to .

F : ℝd → ℝ
u ∈ ℝd

lim
w→u

F(w) − (F(u) + ⟨∇F(u), w − u⟩)
∥w − u∥

= 0

u ∈ ℝd

F(w) ≈ F(u) + ⟨∇F(u), w − u⟩ w
u

Differential Calculus

54

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5

approximation at 1

Review: Derivative

If is differentiable, then for
any ,

At any point ,
 for all

close to .

F : ℝd → ℝ
u ∈ ℝd

lim
w→u

F(w) − (F(u) + ⟨∇F(u), w − u⟩)
∥w − u∥

= 0

u ∈ ℝd

F(w) ≈ F(u) + ⟨∇F(u), w − u⟩ w
u

Differential Calculus

55

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5

approximation at 1

Gradient Descent
Rough Derivation

Given with objective , how do we change to make smaller?

, as long as is close to .

For any direction with small :

So, if , we should have:

 as long as is small.

u ∈ ℝd F(u) u F

F(w) ≈ F(u) + ∇F(u)⊤(w − u) w u

δ ∈ ℝd ∥δ∥

F(u + δ) ≈ F(u) + ∇F(u)⊤(u + δ − u) ⟹ F(u + δ) ≈ F(u) + ∇F(u)⊤δ

δ = − η∇F(u)

F(u − η∇F(u)) ≈ F(u) − η∥∇F(u)∥2 η

56

u

w

Lipschitz & Smoothness
Definition

Lipschitzness: “function doesn’t change too much”

A function is a Lipschitz continuous with constant if

.

A function is a -smooth if is Lipschitz continuous:

 for all .

If twice-differentiable, is -smooth if the eigenvalues of its Hessian are at most .

.

F : ℝd → ℝ L > 0

∥F(x) − F(y)∥ ≤ L∥x − y∥

F : ℝd → ℝ L ∇F

∥∇F(x) − ∇F(y)∥ ≤ ∥x − y∥ x, y

F L L

λmax(∇2F(x)) ≤ L

57

Gradient Descent Guarantees
Theorem 1: Descent Lemma

Theorem (Descent Lemma).

If is “smooth enough,” then there is a choice of such that, for any ,

.

“Smooth enough” : is an -smooth function.

Taylor’s Theorem: makes the rigorous!

F η > 0 w ∈ ℝd

F(w − η∇F(w)) ≤ F(w) −
η
2

∥∇F(w)∥2

F L

≈

Gradient Descent Guarantees
Theorem 1: Descent Lemma

Theorem (Descent Lemma).

If is continuously twice-differentiable and -smooth for any ,

when .

F L w ∈ ℝd

F(w − η∇F(w)) ≤ F(w) −
η
2

∥∇F(w)∥2

η ≤ 1/L

Example: Linear Regression

where ,

Gradient descent:

min
w∈ℝd

1
n

∥Xw − y∥2

X ∈ ℝn×d y ∈ ℝn

w(t) ← w(t−1) − η ⋅
2
n

X⊤(Xw − y)

Gradient Descent

60

Example: Linear Regression

Initialize at a randomly chosen .

For iteration :

Return final .

w(0) ∈ ℝd

t = 1,2,…, T

w(t) ← w(t−1) − η ⋅
2
n

X⊤(Xw − y)

w(T)

Gradient Descent

Example: Linear Regression

Initialize at a randomly chosen .

For iteration :

Return final .

w(0) ∈ ℝd

t = 1,2,…, T

w(t) ← w(t−1) − η ⋅
2
n

X⊤(Xw − y)

w(T)

−10 −5 0 5 10−10

−5

0

5

10

20

40

60

80

100

120

140

160

180

200

220

240

260Gradient Descent

Guarantee (Informal)

If is small enough, then the gradient
descent update rule

has the property:

.

η

w(t) ← w(t−1) − η∇F(w(t−1))

F(w(t)) ⪅ F(w(t−1)) − η∥∇F(w(t−1))∥2

Descent Lemma

Guarantee (Informal)

If is small enough, then the gradient
descent update rule

has the property:

.

η

w(t) ← w(t−1) − η∇F(w(t−1))

F(w(t)) ⪅ F(w(t−1)) − η∥∇F(w(t−1))∥2

Descent Lemma

−
η
2

∥∇F(w(t−1))∥2

Guarantee (Informal)

If is small enough, then the gradient
descent update rule

has the property:

.

η

w(t) ← w(t−1) − η∇F(w(t−1))

F(w(t)) ⪅ F(w(t−1)) − η∥∇F(w(t−1))∥2

Descent Lemma

∥∇F(w(t−1))∥ = 0

Guarantee (Informal)

If is small enough, then the gradient
descent update rule

has the property:

.

When is too large, all bets are off —
gradient descent may diverge!

η

w(t) ← w(t−1) − η∇F(w(t−1))

F(w(t)) ⪅ F(w(t−1)) − η∥∇F(w(t−1))∥2

η

Descent Lemma

https://samuel-deng.github.io/assets/1003/lec2_badgd.html
https://samuel-deng.github.io/assets/1003/lec2_badgd.html

Guarantee (Informal)

If is small enough, then the gradient
descent update rule

has the property:

.

η

w(t) ← w(t−1) − η∇F(w(t−1))

F(w(t)) ⪅ F(w(t−1)) − η∥∇F(w(t−1))∥2

Descent Lemma

https://samuel-deng.github.io/assets/lec/nonconvex_surface_gd.html
https://samuel-deng.github.io/assets/lec/nonconvex_surface_gd.html

Guarantee (Informal)

If is small enough, then the gradient
descent update rule

has the property:

.

But this can mean getting stuck in a local
minimum!

η

w(t) ← w(t−1) − η∇F(w(t−1))

F(w(t)) ⪅ F(w(t−1)) − η∥∇F(w(t−1))∥2

Descent Lemma

https://samuel-deng.github.io/assets/1003/lec2_nonconvex_stuck.html
https://samuel-deng.github.io/assets/1003/lec2_nonconvex_stuck.html

Guarantee (Informal)

If is small enough, then the gradient
descent update rule

has the property:

.

But this can mean getting stuck in a local
minimum!

η

w(t) ← w(t−1) − η∇F(w(t−1))

F(w(t)) ⪅ F(w(t−1)) − η∥∇F(w(t−1))∥2

Descent Lemma

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10−5

−4

−3

−2

−1

0

1

2

3

4

5

Outline

ERM: Learning as Optimization

Optimizing Linear Regression: Closed Form

Gradient Descent Intuition & Example

Gradient Descent Algorithm & Descent Lemma

Gradient Descent on Convex Functions

Stochastic Gradient Descent

70

What can happen at ?∇F(x) = 0

When , you can have stationary
points that are:

Local minima.

Local maxima.

Global maximum.

Global minimum.

∇F(x) = 0

Stationary Points

71

Intuition

A convex function is a function that is
“bowl-shaped.”

All line segments through any two points
lie above the function.

If differentiable, all linear approximations
lie below the function.

Convex Function

72

This function is convex.

Intuition

A convex function is a function that is
“bowl-shaped.”

All line segments through any two points
lie above the function.

If differentiable, all linear approximations
lie below the function.

Convex Function

73

This function is convex.

Intuition

A convex function is a function that is
“bowl-shaped.”

All line segments through any two points
lie above the function.

If differentiable, all linear approximations
lie below the function.

Convex Function

74

This function is NOT convex.

Gradient Descent Guarantee
Convex, Smooth Functions

Theorem (GD on Convex, Smooth Functions).

If is convex, differentiable, and -smooth, then gradient descent with
converges:

 after steps.

F : ℝd → ℝ L η ≤ 1/L

F(w(T)) − F(w*) ≤
∥w(0) − w*∥2

2ηT
T

75

Gradient Descent
Example: Least Squares Regression

Theorem. If is convex,
differentiable, and -smooth, then gradient
descent with converges:

 after steps.

The “classical ML” part of this course will mainly
be concerned with convex objectives, where we
have nice guarantees about optimization.

F : ℝd → ℝ
L

η ≤ 1/L

F(w(T)) − F(w*) ≤
∥w(0) − w*∥2

2ηT
T

76

Notes on Convergence
Step Size

…gradient descent with converges.

Fixed step size works as long as it is small enough.

No guarantees (may diverge) if step sizes are too big.

Intuition from theorem: allowable step sizes are sensitive to the “change in the derivative.”

 is a -smooth if is Lipschitz continuous:

 for all .

η ≤ 1/L

F : ℝd → ℝ L ∇F

∥∇F(x) − ∇F(y)∥ ≤ ∥x − y∥ x, y

77

Notes on Computation
Scalability Issues

Recall our main problem of empirical risk minimization (ERM):

.

Hypothesis Class: (e.g. linear functions)

Given dataset we want to minimize the empirical risk:

min
h∈ℋ

1
n

n

∑
i=1

ℓ(h(x(i)), y(i))

ℋ = {hw : 𝒳 → 𝒴 : w ∈ ℝd}

Dn := {(x(1), y(1)), …, (x(n), y(n))}

R̂n(w) =
1
n

n

∑
i=1

ℓ(hw(x(i)), y(i))

78

Notes on Computation
Scalability Issues

If is differentiable as function of , we can do gradient descent on .

Example: .

At every step, we need to compute the gradient at the current :

R̂n(w) =
1
n

n

∑
i=1

ℓ(hw(x(i)), y(i))

ℓ(hw(x(i)), y(i)) w R̂n(w)

R̂n(w) =
1
n

n

∑
i=1

(w⊤x(i) − y(i))2

w

∇R̂n(w) =
1
n

n

∑
i=1

∇wℓ(hw(x(i)), y(i))

79

Need to iterate over all training points each step!n

Outline

ERM: Learning as Optimization

Optimizing Linear Regression: Closed Form

Gradient Descent Intuition & Example

Gradient Descent Algorithm & Descent Lemma

Gradient Descent on Convex Functions

Stochastic Gradient Descent

80

Stochastic Gradient Descent
Intuition

Issue: At every step, we need to compute the gradient at the current :

Claim: If we choose uniformly at random, then:

.

The estimate is a stochastic gradient.

w

∇R̂n(w) =
1
n

n

∑
i=1

∇wℓ(hw(x(i)), y(i))

j ∈ [n]

𝔼j∼[n][∇wℓ(hw(x(j)), y(j))] = ∇R̂n(w)

∇wℓ(hw(x(j)), y(j))

81

Algorithm

Initialize at a randomly chosen .

For iteration (until “stopping
condition” is satisfied):

Choose uniformly at random.

Move in direction of steepest descent in
expectation.

w(0) ∈ ℝd

t = 1,2,…

j ∈ [n]

w(t) ← w(t−1) − η∇wℓ(hw(x(j)), y(j))

Stochastic GD

82

Algorithm

Initialize at a randomly chosen .

For iteration (until “stopping
condition” is satisfied):

Choose uniformly at random.

Computation: instead of per step
because only needs to touch single point.

w(0) ∈ ℝd

t = 1,2,…

j ∈ [n]

w(t) ← w(t−1) − η∇wℓ(hw(x(j)), y(j))

O(d) O(nd)

−10 −5 0 5 10−10

−5

0

5

10

50

100

150

200

250

300

Stochastic GD

83

Main Difference

Stochastic gradient descent: More
iterations to reach minimum, but lower
cost per iteration.

Gradient descent: Fewer iterations to
reach minimum, but higher cost per
iteration.

−10 −5 0 5 10−10

−5

0

5

10

50

100

150

200

250

300

Stochastic GD

84

Main Difference

Common (“rule of thumb”) behavior:

Stochastic gradient descent: More
iterations to reach minimum, but lower
cost per iteration.

Gradient descent: Fewer iterations to
reach minimum, but higher cost per
iteration.

Stochastic GD

85

Minibatch Gradient Descent
SGD in Practice

Full gradient:

This is an average over the full batch of data .

Take a random subsample of size called a minibatch: (is stochastic gradient descent)

Minibatch gradient:

∇R̂n(w) =
1
n

n

∑
i=1

∇wℓ(hw(x(i)), y(i))

Dn = {(x(1), y(1)), …, (x(n), y(n))}

N N = 1

(x(m1), y(m1)), …, (x(mN), y(mN))

∇R̂N(w) =
1
N

N

∑
i=1

∇wℓ(hw(x(mi)), y(mi))

86

Minibatch Gradient
Properties

1. is an unbiased estimator.

2. is a better estimate with a bigger minibatch.

∇R̂N(w) =
1
N

N

∑
i=1

∇wℓ(hw(x(mi)), y(mi))

R̂N(w)

𝔼(m1,…,mN)[∇R̂N(w)] = ∇R̂n(w)

R̂N(w)

Var [∇R̂N(w)] = Var [1
N

N

∑
i=1

∇wℓ(hw(x(mi)), y(mi))] =
1

N2
Var [∑

i

∇wℓ(mi)] =
1
N

Var [∇wℓ(m1)]

87

Comparison

Minibatch GD tends to need fewer
iterations to converge than SGD.

Price per iteration is , where
is the minibatch size.

Typically, delivers good
performance.

On modern hardware, small
minibatch sizes come “for
free” because of parallelization.

O(Nd) N

N ≪ n

N ≈ 32

Minibatch GD

88

sgd

full gd

minibatch gd

(toy cartoon of gradient descent paths)

Notes on Convergence
Stochastic Gradient Descent

For convergence guarantees, can use diminishing step sizes, e.g. .

Theoretically, GD is much faster than SGD in terms of convergence rate:

But much more computationally costly to compute a single step.

Most advantage of GD over SGD comes into play once we’re close to minimum.

In many ML problems, we don’t care about optimizing close to minimum.

In practice, SGD with fixed step size can work well.

Typical approach: step size reduced by constant factor when validation performance stalls.

ηt = 1/t

89

Excess Risk Formalization

1. Collect training dataset, a
collection of labeled input-output
pairs.

2. Decide on the template of the
hypothesis mapping that will map
inputs to outputs.

3. A learning algorithm takes the
labeled training data as input and
outputs a hypothesis.

4. The hypothesis predicts on new,
unseen data which we hope it does
well on, under a notion of loss.

Supervised Learning

90

Representation

Optimization

Generalization

We receive from an algorithm.

Excess risk of :

h̃n

h̃n

R(h̃n) − R(h*) =

R(h̃n) − R(ĥn)

opt. error

+ R(ĥn) − R(h*ℋ)

est. error

+ R(h*ℋ) − R(h*)

approx. error
RepresentationOptimization Generalization

How do we get a good approximation to the ERM?

Outline

ERM: Learning as Optimization

Optimizing Linear Regression: Closed Form

Gradient Descent Intuition & Example

Gradient Descent Algorithm & Descent Lemma

Gradient Descent on Convex Functions

Stochastic Gradient Descent

91

