
DS-GA 1003: Machine Learning
Lecture 2: Optimization and Gradient Descent
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Slides adapted from material from David Rosenberg.



Logistics & Announcements

PS 1 due date. Next Tuesday, February 3rd 11:59 PM.  

Need help? Full office hours schedule this week; Ed Discussion for questions. 

Feedback? Two channels: Anonymous Feedback Form and Lab Attendance Form. 

5 minute break roughly halfway. 

Math Review Videos. From feedback on Lab Attendance Forms and posted on Course Content 
page. First set on Bayes Hypothesis derivation and conditional expectations. 

Lecture Recordings. Can be found on Brightspace => Zoom.
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Outline

ERM: Learning as Optimization 

Optimizing Linear Regression: Closed Form 

Gradient Descent Intuition & Example 

Gradient Descent Algorithm & Descent Lemma 

Gradient Descent on Convex Functions 

Stochastic Gradient Descent
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Statistical Learning Setup
Formalization of Prediction Problem

1. Observe an input . 

2. Predict an action . 

3. Observe the true 
outcome . 

4. Evaluate the actions in 
relation to the outcome.

x ∈ 𝒳

a ∈ 𝒜

y ∈ 𝒴
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 is the input space (e.g. , pixels, words). 

 is the output space (e.g.  or ). 

 is the action space (e.g. prediction of , some decision). 

 is a hypothesis to generate action . 

Evaluate  with loss function . 

 evaluates  on . 

 is risk of .

𝒳 ℝd

𝒴 {0,1} ℝ

𝒜 y

h : 𝒳 → 𝒜 h(x)

h ℓ : 𝒜 × 𝒴 → ℝ

ℓ(h(x), y) h (x, y)

R(h) = 𝔼(x,y)∼P𝒳×𝒴
[ℓ(h(x), y)] h



The Main Cast
Summary of the Problem

Examples from input space  and output space ; unknown distribution  over . 

Action space  as the output (often, a prediction) of learned hypothesis/predictor. 

We evaluate actions with a loss function . 

Goal: Find a hypothesis  to minimize the risk . 

We can approximate risk with the empirical risk over sample : 

.

𝒳 𝒴 P𝒳×𝒴 𝒳 × 𝒴

𝒜

ℓ : 𝒜 × 𝒴 → ℝ

h : 𝒳 → 𝒜 R(h) := 𝔼[ℓ(h(x), y)]

Dn = {(x(1), y(1)), …, (x(n), y(n))}

R̂n(h) :=
1
n

n

∑
i=1

ℓ(h(x(i)), y(i))
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The Main Cast
Summary of the Problem

Goal: Find a hypothesis  to minimize the risk . 

We can approximate risk with the empirical risk over sample . 

Choose a hypothesis class  and find the empirical risk minimizer : 

 

Or find  that approximates  well.

h : 𝒳 → 𝒜 R(h) := 𝔼[ℓ(h(x), y)]

Dn = {(x(1), y(1)), …, (x(n), y(n))}

ℋ ĥn ∈ ℋ

ĥn ∈ argmin
h∈ℋ

1
n

n

∑
i=1

ℓ(h(x(i)), y(i))

R̂n(h)

h̃n ĥn
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The Main Cast
Summary of the Problem

Goal: Find a hypothesis  to minimize the risk . 

Overall quality (excess risk) of our produced  : 

 

Choose  that balances approximation error and estimation error. 

With more data, estimation error typically decreases, can use bigger . 

Produce  via an algorithm that (approximately and efficiently) minimizes empirical error.

h : 𝒳 → 𝒜 R(h) := 𝔼[ℓ(h(x), y)]

h̃n

R(h̃n) − R(h*) = R(h̃n) − R(ĥn)

opt. error

+ R(ĥn) − R(h*ℋ)

est. error

+ R(h*ℋ) − R(h*)

approx. error

ℋ

ℋ

h̃n
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Full Decomposition

We receive  from an algorithm. 

Excess risk of : 

 

h̃n

h̃n

R(h̃n) − R(h*) =

R(h̃n) − R(ĥn)

opt. error

+ R(ĥn) − R(h*ℋ)

est. error

+ R(h*ℋ) − R(h*)

approx. error

Excess Risk

ℋ

ĥn
h*

hℋh̃n

All functions 
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R(h̃n) − R(ĥn)

R(h*ℋ) − R(h*)

R(ĥn) − R(h*ℋ)



Excess Risk Formalization

1. Collect training dataset, a 
collection of labeled input-output 
pairs. 

2. Decide on the template of the 
hypothesis mapping that will map 
inputs to outputs. 

3. A learning algorithm takes the 
labeled training data as input and 
outputs a hypothesis. 

4. The hypothesis predicts on new, 
unseen data which we hope it does 
well on, under a notion of loss.

Supervised Learning
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Representation

Optimization

Generalization

We receive  from an algorithm. 

Excess risk of : 

 

h̃n

h̃n

R(h̃n) − R(h*) =

R(h̃n) − R(ĥn)

opt. error

+ R(ĥn) − R(h*ℋ)

est. error

+ R(h*ℋ) − R(h*)

approx. error
RepresentationOptimization Generalization



Excess Risk Formalization

1. Collect training dataset, a 
collection of labeled input-output 
pairs. 

2. Decide on the template of the 
hypothesis mapping that will map 
inputs to outputs. 

3. A learning algorithm takes the 
labeled training data as input and 
outputs a hypothesis. 

4. The hypothesis predicts on new, 
unseen data which we hope it does 
well on, under a notion of loss.

Supervised Learning
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Representation

Optimization

Generalization

We receive  from an algorithm. 

Excess risk of : 

 

h̃n

h̃n

R(h̃n) − R(h*) =

R(h̃n) − R(ĥn)

opt. error

+ R(ĥn) − R(h*ℋ)

est. error

+ R(h*ℋ) − R(h*)

approx. error
RepresentationOptimization Generalization

How do we get a good approximation to the ERM? 



Learning as Optimization
Recurring Theme

 

Estimation error: As , typically . 

Approximation error: Controlled by choosing a good hypothesis class . 

Optimization error: Can we make this small using an efficient algorithm? 

Can we solve the optimization problem: ?

R(h̃n) − R(ĥn)

opt. error

+ R(ĥn) − R(h*ℋ)

est. error

+ R(h*ℋ) − R(h*)

approx. error

n → ∞ R(ĥn) − R(h*ℋ) → 0

ℋ

min
h∈ℋ

1
n

n

∑
i=1

ℓ(h(x(i)), y(i))
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Linear (Least Squares) Regression
Running Example

Input space:  

Output space:          Action space:  

Loss Function:  

Hypothesis Class:  

Given dataset  we want to minimize the empirical risk: 

 or  with , .

𝒳 = ℝd

𝒴 = ℝ 𝒜 = 𝒴 = ℝ

ℓ( ̂y, y) = ( ̂y − y)2

ℋ = {h : ℝd → ℝ : h(x) = w⊤x, w ∈ ℝd}

Dn := {(x(1), y(1)), …, (x(n), y(n))}

R̂n(w) =
1
n

n

∑
i=1

(w⊤x(i) − y(i))2 R̂n(w) =
1
n

∥Xw − y∥2 X ∈ ℝn×d y ∈ ℝn

13

Hypothesis class is parametrized by w ∈ ℝd

Objective in scalar form Objective in matrix-vector form



Linear Regression
Examples

Predicting stock prices.  

Inputs: metrics about company (earnings reports, historical prices, etc.). Output: stock price. 

Predicting the weather. 

Inputs: weather data, meteorological measurements. Output: tomorrow’s temperature. 

Predicting sports performance.  

Inputs: historical performance (batting averages, free throw percentages. Output: player score. 

⋮
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Linear Regression
Matrix-vector Form

 

 is the design matrix and  is the output vector. 

R̂n(w) =
1
n

n

∑
i=1

(w⊤x(i) − y(i))2

X =
← x(1) →

⋮
← x(n) →

∈ ℝn×d y =
y(1)

⋮
y(n)

∈ ℝn
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Linear Regression
Matrix-vector Form

 

 

Therefore, . 

So we can always rewrite .

R̂n(w) =
1
n

n

∑
i=1

(w⊤x(i) − y(i))2

Xw − y =
← x(1) →

⋮
← x(n) →

w1
⋮
wd

−
y(1)

⋮
y(n)

=
w⊤x(1) − y(1)

⋮
w⊤x(n) − y(n)

∥Xw − y∥2 =
n

∑
i=1

(w⊤x(i) − y(i))2

R̂n(w) =
1
n

n

∑
i=1

(w⊤x(i) − y(i))2 =
1
n

∥Xw − y∥2
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Linear Regression
A note on intercepts

For each , what if we want to predict: ? 

Solution: We add a “dummy”  to each example: 

. 

Solve problem with ,  and modified 
dataset . 

Minimizer will be , so  is your intercept term. 

We can always do this without loss of generality (so focus on the  intercept case).

i ∈ [n] w1x(i)
1 + … + wdx(i)

d + w0

1

x̃(i) = (x(i)
1 x(i)

2 … x(i)
d 1)

𝒳 = ℝd+1 ℋ = {h : ℝd+1 → ℝ : h(x) = w⊤x, w ∈ ℝd+1}
Dn := {(x̃(1), y(1)), …, (x̃(n), y(n))}

w̃ = (w1 w2 … wd w0) ∈ ℝd+1 w0

0



Linear Regression
Example: d = 1

X =

⋮
−0.58
1.36
1.30

−0.86
⋮

y =

⋮
−0.30
3.16
3.29

−1.75
⋮



Linear Regression
Example: d = 2

X =

⋮ ⋮
0.51 −0.53

−0.56 −1.72
−0.57 −0.99
1.54 0.36

⋮ ⋮

y =

⋮
−85.35
−121.2
−46.14
154.72

⋮

https://samuel-deng.github.io/assets/1003/lec2_regd2.html


Example: Loss Surface

For a fixed dataset  and , 
the loss of any  is: 

 

. 

We can visualize it with a loss surface.

X ∈ ℝn×2 y ∈ ℝn

w ∈ ℝ2

R̂n : ℝ2 → ℝ

R̂n(w) = ∥Xw − y∥2

Linear Regression
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https://samuel-deng.github.io/assets/1003/lec2_objective.html
https://samuel-deng.github.io/assets/1003/lec2_objective.html


Example: Loss Surface

For a fixed dataset  and , 
the loss of any  is: 

 

. 

We can visualize it with a loss surface. 

The contours of the loss surface are its 
level sets .

X ∈ ℝn×2 y ∈ ℝn

w ∈ ℝ2

R̂n : ℝ2 → ℝ

R̂n(w) = ∥Xw − y∥2

Lc := {w ∈ ℝ2 : R̂n(w) = c}

−10 −5 0 5 10−10

−5

0

5

10

50

100

150

200

250

300
Linear Regression
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Linear (Least Squares) Regression
Closed Form Solution

Given dataset  we want to minimize the empirical risk: 

 , where  is the design matrix. 

Can we solve this this optimization problem? 

 

Dn := {(x(1), y(1)), …, (x(n), y(n))}

R̂n(w) =
1
n

n

∑
i=1

(w⊤x(i) − y(i))2 =
1
n

∥Xw − y∥2 X ∈ ℝn×d

w ∈ arg min
w∈ℝd

∥Xw − y∥2
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Linear (Least Squares) Regression
Closed Form Solution

 

Analogy. How would you solve the one-dimensional optimization problem: 

 ? 

From elementary calculus. Take derivative, set to  to find candidate minimizers, and verify the 
critical points are indeed minimizers by taking second derivatives. 

w ∈ arg min
w∈ℝd

∥Xw − y∥2

w ∈ arg min
w∈ℝd

(aw − b)2

0

23



Linear (Least Squares) Regression
Closed Form Solution

Given dataset  we want to minimize the empirical risk: 

 , where  is the design matrix. 

If  with  and , the closed form solution is: 

.

Dn := {(x(1), y(1)), …, (x(n), y(n))}

R̂n(w) =
1
n

n

∑
i=1

(w⊤x(i) − y(i))2 =
1
n

∥Xw − y∥2 X ∈ ℝn×d

X ∈ ℝn×d n ≥ d rank(X) = d

ŵ = (X⊤X)−1X⊤y
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Linear (Least Squares) Regression
Running Example

Input space:  

Output space:          Action space:  

Loss Function:  

Hypothesis Class:  

Given dataset  we want to minimize the empirical risk: 

 or  with , .

𝒳 = ℝd

𝒴 = ℝ 𝒜 = 𝒴 = ℝ

ℓ( ̂y, y) = ( ̂y − y)2

ℋ = {h : ℝd → ℝ : h(x) = w⊤x, w ∈ ℝd}

Dn := {(x(1), y(1)), …, (x(n), y(n))}

R̂n(w) =
1
n

n

∑
i=1

(w⊤x(i) − y(i))2 R̂n(w) =
1
n

∥Xw − y∥2 X ∈ ℝn×d y ∈ ℝn

26

Hypothesis class is parametrized by w ∈ ℝd

Objective in scalar form Objective in matrix-vector form



Running Example

Given  we 
want to minimize the empirical risk: 

  

with , . 

Closed-form solution: . 

We can also solve iteratively.

Dn := {(x(1), y(1)), …, (x(n), y(n))}

R̂n(w) =
1
n

∥Xw − y∥2

X ∈ ℝn×d y ∈ ℝn

(X⊤X)−1X⊤y

Linear Regression
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https://samuel-deng.github.io/assets/1003/lec2_objective.html
https://samuel-deng.github.io/assets/1003/lec2_objective.html


Running Example

Given  we 
want to minimize the empirical risk: 

  

with , . 

Closed-form solution: . 

We can also solve iteratively.

Dn := {(x(1), y(1)), …, (x(n), y(n))}

R̂n(w) =
1
n

∥Xw − y∥2

X ∈ ℝn×d y ∈ ℝn

(X⊤X)−1X⊤y

Linear Regression
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Unconstrained Optimization
Setting

 

where we assume the objective function  is differentiable. 

Goal: Given an objective function , find the  that makes  as small as possible.

min
w∈ℝd

F(w)

F : ℝd → ℝ

F w F(w)
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Unconstrained Optimization
Setting

 

where we assume the objective function  is differentiable. 

Example: Linear regression ERM objective:

min
w∈ℝd

F(w)

F : ℝd → ℝ

min
w∈ℝd

1
n

n

∑
i=1

(w⊤x(i) − y(i))2 =
1
n

∥Xw − y∥2

30

Objective function F(w)



Moving in steepest descent direction

 

Suppose I drop you off at . 

Or at . 

Which direction to go in to decrease ?  

If slope is negative, go right. 

If slope is positive, go left.

minimize
w∈ℝ

F(w)

w = − 0.5

w = 2

F

−4 −3 −2 −1 0 1 2 3−5

−4

−3

−2

−1

0

1

2

3

4

5A candidate algorithm



Moving in steepest descent direction

 

Suppose I drop you off at . 

Or at . 

Which direction to go in to decrease ?  

Follow the derivative (slope at a point)! 

Repeat over and over to minimize. 

Eventually, we might reach a minimum!

minimize
w∈ℝ

F(w)

w = − 0.5

w = 2

F

−4 −3 −2 −1 0 1 2 3−5

−4

−3

−2

−1

0

1

2

3

4

5A candidate algorithm



Moving in steepest descent direction

 

But we can also just minimize in one shot! 

 

(first order condition) 

Not always possible (e.g. logistic 
regression, neural networks, etc.), so we 

need an iterative algorithm.

minimize
w∈ℝ

F(w)

F′￼(w) = 0

−4 −3 −2 −1 0 1 2 3−5

−4

−3

−2

−1

0

1

2

3

4

5A candidate algorithm



Moving in steepest descent direction

 

Infinitely many directions now in … 

But still can go in the “steepest decrease” 
direction!

minimize
w∈ℝd

F(w)

d ≥ 2

A candidate algorithm

w1

w2

https://samuel-deng.github.io/assets/1003/lec2_descentdir.html
https://samuel-deng.github.io/assets/1003/lec2_descentdir.html


Moving in steepest descent direction
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Infinitely many directions now in … 

But still can go in the “steepest decrease” 
direction!

minimize
w∈ℝd

F(w)

d ≥ 2

w1

w2



Moving in steepest descent direction

 

 

This “greedy” strategy works for arbitrarily 
complex functions.

minimize
w∈ℝd

F(w)

F(w1, w2)

A candidate algorithm

w1

w2



Moving in steepest descent direction
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−2

−1

0

1

2

3
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8A candidate algorithm

 

 

This “greedy” strategy works for arbitrarily 
complex functions.

minimize
w∈ℝd

F(w)

F(w1, w2)

w1

w2



Moving in steepest descent direction

−3 −2 −1 0 1 2 3−3
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1

2

3
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8A candidate algorithm

Start at some arbitrary point . 

Step in the direction of steepest decrease 
for … 

Take another step in the direction of 
steepest decrease for … 

 

Repeat until satisfied.

w(0) ∈ ℝd

F(w)

F(w)

⋮



Moving in steepest descent direction
A candidate algorithm

Start at some arbitrary point . 

Step in the direction of steepest decrease 
for … 

Take another step in the direction of 
steepest decrease for … 

 

Repeat until satisfied.

w(0) ∈ ℝd

F(w)

F(w)

⋮

https://samuel-deng.github.io/assets/1003/lec2_nonconvex_surface_gd.html
https://samuel-deng.github.io/assets/1003/lec2_nonconvex_surface_gd.html
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Moving in steepest descent direction
A candidate algorithm

Start at some arbitrary point . 

Step in the direction of steepest decrease 
for … 

Take another step in the direction of 
steepest decrease for … 

 

Repeat until satisfied.

w(0) ∈ ℝd

F(w)

F(w)

⋮
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Review

The gradient of  at  is a vector 
: 

 

It is the direction  increases the fastest at 
a fixed point .

F u ∈ ℝd

∇F(u) ∈ ℝd

∇F(w0) := ( ∂F
∂w1

(u), …,
∂F
∂wd

(u))

F
u

Gradient

48
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Gradient
The direction of steepest ascent (Why?)

Steepest increase direction?

w1

w2

∇F(w)

Recall: directional derivative is the rate of 
change of  in direction  F v ∈ ℝd

∇F(w)

v

θ

v⊤ ∇F(w) = ∥v∥∥∇F(w)∥ cos θ

∥v∥ = 1
Maximized when ,  

i.e. when  is exactly in  direction!
θ = 0

v ∇F(w)



Gradient Descent
Algorithm

Initialize at a randomly chosen . 

For iteration  (until “stopping condition” is satisfied): 

 

Return final , with objective value .

w(0) ∈ ℝd

t = 1,2,…

w(t) ← w(t−1) − η∇F(w(t−1))

w(t) F(w(t))

50



Gradient Descent
Stopping Condition

For iteration  (until “stopping condition” is satisfied): 

 

Typically: 

Until  (recall:  at a minimum). 

In practice, with validation data, can implement early stopping: 

Evaluate performance on validation as you go, stop when no longer improving.

t = 1,2,…

w(t) ← w(t−1) − η∇F(w(t−1))

∥∇f(w(t))∥ ≤ ϵ ∇f(w) = 0

51



Gradient Descent
Step Size

 

The step size/learning rate of gradient descent is a positive number . 

A fixed step size will work as long as it is small enough. 

 too large: optimization might diverge. 

 too small: optimization might take a long time. 

In practice, can make sense to try several fixed step sizes or decaying step sizes . 

What properties of  relate to how large/small a step to take?

w(t) ← w(t−1) − η∇F(w(t−1))

η > 0

η

η

ηt

F

52



Differential Calculus
Review: Derivative

If  is differentiable, then for any , 

 

At any point ,  for all  close to .

F : ℝd → ℝ u ∈ ℝd

lim
w→u

F(w) − (F(u) + ⟨∇F(u), w − u⟩)
∥w − u∥

= 0

u ∈ ℝd F(w) ≈ F(u) + ⟨∇F(u), w − u⟩ w u

Linear approximation of  at point .F u



Review: Derivative

If  is differentiable, then for 
any , 

 

At any point , 
 for all  

close to .

F : ℝd → ℝ
u ∈ ℝd

lim
w→u

F(w) − (F(u) + ⟨∇F(u), w − u⟩)
∥w − u∥

= 0

u ∈ ℝd

F(w) ≈ F(u) + ⟨∇F(u), w − u⟩ w
u

Differential Calculus

54
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Review: Derivative

If  is differentiable, then for 
any , 

 

At any point , 
 for all  

close to .

F : ℝd → ℝ
u ∈ ℝd

lim
w→u

F(w) − (F(u) + ⟨∇F(u), w − u⟩)
∥w − u∥

= 0

u ∈ ℝd

F(w) ≈ F(u) + ⟨∇F(u), w − u⟩ w
u

Differential Calculus
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Gradient Descent
Rough Derivation

Given  with objective , how do we change  to make  smaller? 

, as long as  is close to . 

For any direction  with small :  

   

So, if , we should have:  

 as long as  is small.

u ∈ ℝd F(u) u F

F(w) ≈ F(u) + ∇F(u)⊤(w − u) w u

δ ∈ ℝd ∥δ∥

F(u + δ) ≈ F(u) + ∇F(u)⊤(u + δ − u) ⟹ F(u + δ) ≈ F(u) + ∇F(u)⊤δ

δ = − η∇F(u)

F(u − η∇F(u)) ≈ F(u) − η∥∇F(u)∥2 η

56

u

w



Lipschitz & Smoothness
Definition

Lipschitzness: “function doesn’t change too much” 

A function  is a Lipschitz continuous with constant  if 

. 

A function  is a -smooth if  is Lipschitz continuous: 

 for all .  

If twice-differentiable,  is -smooth if the eigenvalues of its Hessian are at most . 

.

F : ℝd → ℝ L > 0

∥F(x) − F(y)∥ ≤ L∥x − y∥

F : ℝd → ℝ L ∇F

∥∇F(x) − ∇F(y)∥ ≤ ∥x − y∥ x, y

F L L

λmax(∇2F(x)) ≤ L

57



Gradient Descent Guarantees
Theorem 1: Descent Lemma

Theorem (Descent Lemma).  

If  is “smooth enough,” then there is a choice of  such that, for any , 

. 

“Smooth enough” :  is an -smooth function. 

Taylor’s Theorem: makes the  rigorous!

F η > 0 w ∈ ℝd

F(w − η∇F(w)) ≤ F(w) −
η
2

∥∇F(w)∥2

F L

≈



Gradient Descent Guarantees
Theorem 1: Descent Lemma

Theorem (Descent Lemma).  

If  is continuously twice-differentiable and -smooth for any , 

  

when .

F L w ∈ ℝd

F(w − η∇F(w)) ≤ F(w) −
η
2

∥∇F(w)∥2

η ≤ 1/L



Example: Linear Regression

 

where ,   

Gradient descent: 

min
w∈ℝd

1
n

∥Xw − y∥2

X ∈ ℝn×d y ∈ ℝn

w(t) ← w(t−1) − η ⋅
2
n

X⊤(Xw − y)

Gradient Descent
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Example: Linear Regression

Initialize at a randomly chosen . 

For iteration  : 

 

Return final .

w(0) ∈ ℝd

t = 1,2,…, T

w(t) ← w(t−1) − η ⋅
2
n

X⊤(Xw − y)

w(T)

Gradient Descent



Example: Linear Regression

Initialize at a randomly chosen . 

For iteration  : 

 

Return final .

w(0) ∈ ℝd

t = 1,2,…, T

w(t) ← w(t−1) − η ⋅
2
n

X⊤(Xw − y)

w(T)
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Guarantee (Informal)

If  is small enough, then the gradient 
descent update rule 

 

has the property: 

.

η

w(t) ← w(t−1) − η∇F(w(t−1))

F(w(t)) ⪅ F(w(t−1)) − η∥∇F(w(t−1))∥2

Descent Lemma



Guarantee (Informal)

If  is small enough, then the gradient 
descent update rule 

 

has the property: 

.

η

w(t) ← w(t−1) − η∇F(w(t−1))

F(w(t)) ⪅ F(w(t−1)) − η∥∇F(w(t−1))∥2

Descent Lemma

−
η
2

∥∇F(w(t−1))∥2



Guarantee (Informal)

If  is small enough, then the gradient 
descent update rule 

 

has the property: 

.

η

w(t) ← w(t−1) − η∇F(w(t−1))

F(w(t)) ⪅ F(w(t−1)) − η∥∇F(w(t−1))∥2

Descent Lemma

∥∇F(w(t−1))∥ = 0



Guarantee (Informal)

If  is small enough, then the gradient 
descent update rule 

 

has the property: 

. 

When  is too large, all bets are off — 
gradient descent may diverge!

η

w(t) ← w(t−1) − η∇F(w(t−1))

F(w(t)) ⪅ F(w(t−1)) − η∥∇F(w(t−1))∥2

η

Descent Lemma

https://samuel-deng.github.io/assets/1003/lec2_badgd.html
https://samuel-deng.github.io/assets/1003/lec2_badgd.html


Guarantee (Informal)

If  is small enough, then the gradient 
descent update rule 

 

has the property: 

.

η

w(t) ← w(t−1) − η∇F(w(t−1))

F(w(t)) ⪅ F(w(t−1)) − η∥∇F(w(t−1))∥2

Descent Lemma

https://samuel-deng.github.io/assets/lec/nonconvex_surface_gd.html
https://samuel-deng.github.io/assets/lec/nonconvex_surface_gd.html


Guarantee (Informal)

If  is small enough, then the gradient 
descent update rule 

 

has the property: 

. 

But this can mean getting stuck in a local 
minimum!

η

w(t) ← w(t−1) − η∇F(w(t−1))

F(w(t)) ⪅ F(w(t−1)) − η∥∇F(w(t−1))∥2

Descent Lemma

https://samuel-deng.github.io/assets/1003/lec2_nonconvex_stuck.html
https://samuel-deng.github.io/assets/1003/lec2_nonconvex_stuck.html


Guarantee (Informal)

If  is small enough, then the gradient 
descent update rule 

 

has the property: 

. 

But this can mean getting stuck in a local 
minimum!

η

w(t) ← w(t−1) − η∇F(w(t−1))

F(w(t)) ⪅ F(w(t−1)) − η∥∇F(w(t−1))∥2

Descent Lemma
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What can happen at ?∇F(x) = 0

When , you can have stationary 
points that are: 

Local minima. 

Local maxima. 

Global maximum. 

Global minimum.

∇F(x) = 0

Stationary Points

71



Intuition

A convex function is a function that is 
“bowl-shaped.” 

All line segments through any two points 
lie above the function.  

If differentiable, all linear approximations 
lie below the function.

Convex Function

72

This function is convex.



Intuition

A convex function is a function that is 
“bowl-shaped.” 

All line segments through any two points 
lie above the function.  

If differentiable, all linear approximations 
lie below the function.

Convex Function
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This function is convex.



Intuition

A convex function is a function that is 
“bowl-shaped.” 

All line segments through any two points 
lie above the function.  

If differentiable, all linear approximations 
lie below the function.

Convex Function

74

This function is NOT convex.



Gradient Descent Guarantee
Convex, Smooth Functions

Theorem (GD on Convex, Smooth Functions). 

If  is convex, differentiable, and -smooth, then gradient descent with  
converges: 

 after  steps. 

F : ℝd → ℝ L η ≤ 1/L

F(w(T)) − F(w*) ≤
∥w(0) − w*∥2

2ηT
T
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Gradient Descent
Example: Least Squares Regression

Theorem. If  is convex, 
differentiable, and -smooth, then gradient 
descent with  converges: 

 after  steps. 

The “classical ML” part of this course will mainly 
be concerned with convex objectives, where we 
have nice guarantees about optimization.

F : ℝd → ℝ
L

η ≤ 1/L

F(w(T)) − F(w*) ≤
∥w(0) − w*∥2

2ηT
T

76



Notes on Convergence
Step Size

…gradient descent with  converges. 

Fixed step size works as long as it is small enough. 

No guarantees (may diverge) if step sizes are too big. 

Intuition from theorem: allowable step sizes are sensitive to the “change in the derivative.” 

 is a -smooth if  is Lipschitz continuous: 

 for all . 

η ≤ 1/L

F : ℝd → ℝ L ∇F

∥∇F(x) − ∇F(y)∥ ≤ ∥x − y∥ x, y
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Notes on Computation
Scalability Issues

Recall our main problem of empirical risk minimization (ERM): 

. 

Hypothesis Class:  (e.g. linear functions) 

Given dataset  we want to minimize the empirical risk: 

min
h∈ℋ

1
n

n

∑
i=1

ℓ(h(x(i)), y(i))

ℋ = {hw : 𝒳 → 𝒴 : w ∈ ℝd}

Dn := {(x(1), y(1)), …, (x(n), y(n))}

R̂n(w) =
1
n

n

∑
i=1

ℓ(hw(x(i)), y(i))

78



Notes on Computation
Scalability Issues

 

If  is differentiable as function of , we can do gradient descent on . 

Example: . 

At every step, we need to compute the gradient at the current : 

R̂n(w) =
1
n

n

∑
i=1

ℓ(hw(x(i)), y(i))

ℓ(hw(x(i)), y(i)) w R̂n(w)

R̂n(w) =
1
n

n

∑
i=1

(w⊤x(i) − y(i))2

w

∇R̂n(w) =
1
n

n

∑
i=1

∇wℓ(hw(x(i)), y(i))

79

Need to iterate over all  training points each step!n
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Stochastic Gradient Descent
Intuition

Issue: At every step, we need to compute the gradient at the current : 

 

Claim: If we choose  uniformly at random, then: 

. 

The estimate  is a stochastic gradient. 

w

∇R̂n(w) =
1
n

n

∑
i=1

∇wℓ(hw(x(i)), y(i))

j ∈ [n]

𝔼j∼[n][∇wℓ(hw(x( j)), y( j))] = ∇R̂n(w)

∇wℓ(hw(x( j)), y( j))

81



Algorithm

Initialize at a randomly chosen . 

For iteration  (until “stopping 
condition” is satisfied): 

Choose  uniformly at random. 

 

Move in direction of steepest descent in 
expectation.

w(0) ∈ ℝd

t = 1,2,…

j ∈ [n]

w(t) ← w(t−1) − η∇wℓ(hw(x( j)), y( j))

Stochastic GD
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Algorithm

Initialize at a randomly chosen . 

For iteration  (until “stopping 
condition” is satisfied): 

Choose  uniformly at random. 

 

Computation:  instead of  per step 
because only needs to touch single point.

w(0) ∈ ℝd

t = 1,2,…

j ∈ [n]

w(t) ← w(t−1) − η∇wℓ(hw(x( j)), y( j))

O(d) O(nd)
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Main Difference

Stochastic gradient descent: More 
iterations to reach minimum, but lower 
cost per iteration. 

Gradient descent: Fewer iterations to 
reach minimum, but higher cost per 
iteration.
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Main Difference

Common (“rule of thumb”) behavior: 

Stochastic gradient descent: More 
iterations to reach minimum, but lower 
cost per iteration. 

Gradient descent: Fewer iterations to 
reach minimum, but higher cost per 
iteration.

Stochastic GD
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Minibatch Gradient Descent
SGD in Practice

Full gradient:  

This is an average over the full batch of data . 

Take a random subsample of size  called a minibatch: (  is stochastic gradient descent) 

 

Minibatch gradient:

∇R̂n(w) =
1
n

n

∑
i=1

∇wℓ(hw(x(i)), y(i))

Dn = {(x(1), y(1)), …, (x(n), y(n))}

N N = 1

(x(m1), y(m1)), …, (x(mN), y(mN))

∇R̂N(w) =
1
N

N

∑
i=1

∇wℓ(hw(x(mi)), y(mi))
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Minibatch Gradient
Properties

 

1.  is an unbiased estimator.  

 

2.  is a better estimate with a bigger minibatch. 

∇R̂N(w) =
1
N

N

∑
i=1

∇wℓ(hw(x(mi)), y(mi))

R̂N(w)

𝔼(m1,…,mN)[∇R̂N(w)] = ∇R̂n(w)

R̂N(w)

Var [∇R̂N(w)] = Var [ 1
N

N

∑
i=1

∇wℓ(hw(x(mi)), y(mi))] =
1

N2
Var [∑

i

∇wℓ(mi)] =
1
N

Var [∇wℓ(m1)]
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Comparison

Minibatch GD tends to need fewer 
iterations to converge than SGD. 

Price per iteration is , where  
is the minibatch size. 

Typically,  delivers good 
performance. 

On modern hardware, small 
minibatch sizes  come “for 
free” because of parallelization.

O(Nd) N

N ≪ n

N ≈ 32

Minibatch GD
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full gd

minibatch gd

(toy cartoon of gradient descent paths)



Notes on Convergence
Stochastic Gradient Descent

For convergence guarantees, can use diminishing step sizes, e.g. . 

Theoretically, GD is much faster than SGD in terms of convergence rate: 

But much more computationally costly to compute a single step. 

Most advantage of GD over SGD comes into play once we’re close to minimum. 

In many ML problems, we don’t care about optimizing close to minimum. 

In practice, SGD with fixed step size can work well. 

Typical approach: step size reduced by constant factor when validation performance stalls.

ηt = 1/t
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Excess Risk Formalization

1. Collect training dataset, a 
collection of labeled input-output 
pairs. 

2. Decide on the template of the 
hypothesis mapping that will map 
inputs to outputs. 

3. A learning algorithm takes the 
labeled training data as input and 
outputs a hypothesis. 

4. The hypothesis predicts on new, 
unseen data which we hope it does 
well on, under a notion of loss.

Supervised Learning

90

Representation

Optimization

Generalization

We receive  from an algorithm. 

Excess risk of : 

 

h̃n

h̃n

R(h̃n) − R(h*) =

R(h̃n) − R(ĥn)

opt. error

+ R(ĥn) − R(h*ℋ)

est. error

+ R(h*ℋ) − R(h*)

approx. error
RepresentationOptimization Generalization

How do we get a good approximation to the ERM? 
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