
DS-GA 1003: Machine Learning
Lecture 3: Regularization and Loss Functions

1

Slides adapted from material from David Rosenberg.

Logistics & Announcements

PS 1 due today! Due 11:59 PM ET, late deadline is Thursday, 11:59 PM ET.

PS 2 release. Due in two weeks, Tuesday, Feb. 17 11:59 PM ET.

Looks long! But most of the problems are review/exposition and subproblems are short.

Lab this week. Sam will be doing lab this week to lighten up the load for next lecture.

Lecture for Week 5 (02/17) is cancelled due to President’s Day.

Lecture on Week 6 (02/24) will be remote and recorded. Sam out of town for conference :(

Math review videos. Stay tuned for several linear algebra review videos!

2

Outline

Model Complexity and Model Selection

Controlling Complexity with Regularization

 Regularization and Ridge Regression

 Regularization and Lasso Regression

Understanding Sparsity

Loss Functions: Regression

Loss Functions: Classification

ℓ2

ℓ1

3

Full Decomposition

We receive from an algorithm.

Excess risk of :

h̃n

h̃n

R(h̃n) − R(h*) =

R(h̃n) − R(ĥn)

opt. error

+ R(ĥn) − R(h*ℋ)

est. error

+ R(h*ℋ) − R(h*)

approx. error

Excess Risk

ℋ

ĥn
h*

hℋh̃n

All functions

4

R(h̃n) − R(ĥn)

R(h*ℋ) − R(h*)

R(ĥn) − R(h*ℋ)

Estimation-Approximation Tradeoff
Recurring Theme

Estimation error: As , typically .

Approximation error: Controlled by choosing a good hypothesis class .

Optimization error: Can we make this small using an efficient algorithm?

How does choosing the “size”/“complexity” of affect estimation and approximation error?

R(h̃n) − R(ĥn)

opt. error

+ R(ĥn) − R(h*ℋ)

est. error

+ R(h*ℋ) − R(h*)

approx. error

n → ∞ R(ĥn) − R(h*ℋ) → 0

ℋ

ℋ

5

Excess Risk Formalization

1. Collect training dataset, a
collection of labeled input-output
pairs.

2. Decide on the template of the
hypothesis mapping that will map
inputs to outputs.

3. A learning algorithm takes the
labeled training data as input and
outputs a hypothesis.

4. The hypothesis predicts on new,
unseen data which we hope it does
well on, under a notion of loss.

Supervised Learning

6

Representation

Optimization

Generalization

We receive from an algorithm.

Excess risk of :

h̃n

h̃n

R(h̃n) − R(h*) =

R(h̃n) − R(ĥn)

opt. error

+ R(ĥn) − R(h*ℋ)

est. error

+ R(h*ℋ) − R(h*)

approx. error
RepresentationOptimization Generalization

Excess Risk Formalization

1. Collect training dataset, a
collection of labeled input-output
pairs.

2. Decide on the template of the
hypothesis mapping that will map
inputs to outputs.

3. A learning algorithm takes the
labeled training data as input and
outputs a hypothesis.

4. The hypothesis predicts on new,
unseen data which we hope it does
well on, under a notion of loss.

Supervised Learning

7

Representation

Optimization

Generalization

We receive from an algorithm.

Excess risk of :

h̃n

h̃n

R(h̃n) − R(h*) =

R(h̃n) − R(ĥn)

opt. error

+ R(ĥn) − R(h*ℋ)

est. error

+ R(h*ℋ) − R(h*)

approx. error
RepresentationOptimization Generalization

How do we vary the “size” of to trade
estimation error off with approximation error?

ℋ

Excess Risk
Intuition: Size of ℋ

 R(ĥn) − R(h*) = R(ĥn) − R(h*ℋ)

est. error

+ R(h*ℋ) − R(h*)

approx. error

ℋ

ĥn h*
h*ℋ

R(h*ℋ) − R(h*)

R(ĥn) − R(h*ℋ)

ℋ
ĥn h*

h*ℋ

R(h*ℋ) − R(h*)

R(ĥn) − R(h*ℋ)

ℋ

ĥn
h*

h*ℋ

R(h*ℋ) − R(h*)

R(ĥn) − R(h*ℋ)

8

Trade-off

There can be an infinite number of ERMs!

Regularization: taking a problem with infinitely many solutions and biasing to a smaller (“less
complex”) subset of solutions.

Complexity of ℋ

ℋ

ĥn
h*

hℋ

ĥnĥn
ĥn

All functions

ℋ

ĥn
h*

hℋ

ĥnĥn
ĥn

All functions

Controlling Complexity
General Approach

1. Learn a sequence of models varying in complexity from the training data.

Example: Polynomial Functions

2. Select one of these models based on a score (e.g. validation error).

ℋ1 ⊂ ℋ2 ⊂ … ⊂ ℋn ⊂ ℋ

ℋ = { all polynomial functions}

ℋd = { all polynomials of degree ≤ d}

Controlling Complexity
Examples for Different Hypotheses

Number of variables/features.

Depth of a decision tree.

Degree of a polynomial.

How about for linear decision functions: ?

 complexity: number of non-zero coefficients.

 (“lasso”) complexity: for coefficients .

 (“ridge”) complexity: for coefficients .

x ↦ w1x1 + … + wdxd

ℓ0

ℓ1 ∑ wi w1, …, wd

ℓ2 ∑ w2
i w1, …, wd

Linear (Least Squares) Regression
Running Example

Input space:

Output space: Action space:

Loss Function:

Hypothesis Class:

Given dataset we want to minimize the empirical risk:

 or with , .

𝒳 = ℝd

𝒴 = ℝ 𝒜 = 𝒴 = ℝ

ℓ(̂y, y) = (̂y − y)2

ℋ = {h : ℝd → ℝ : h(x) = w⊤x, w ∈ ℝd}

Dn := {(x(1), y(1)), …, (x(n), y(n))}

R̂n(w) =
1
n

n

∑
i=1

(w⊤x(i) − y(i))2 R̂n(w) =
1
n

∥Xw − y∥2 X ∈ ℝn×d y ∈ ℝn

12

Hypothesis class is parametrized by w ∈ ℝd

Objective in scalar form Objective in matrix-vector form

Polynomial Regression
1D Example

For a feature , we can always transform where

.

Then, fitting a linear model atop transformed features is a polynomial:

.

x ∈ ℝ x ↦ ϕ(x)

ϕ(x) = (1 x x2 … xd)
(ϕ(x1), y1), …, (ϕ(xn), yn)

w⊤ϕ(x) = w0 + w1x + w2x2 + … + wdxd

1D Example

For a feature , we can always
transform where:

.

Then, fitting a linear model atop
transformed features

 is a polynomial:

.

x ∈ ℝ
x ↦ ϕ(x)

ϕ(x) = (1 x x2 … xd)

(ϕ(x1), y1), …, (ϕ(xn), yn)

w⊤ϕ(x) = w0 + w1x + w2x2 + … + wdxd

Polynomial Regression

1D Example: Degree 1

For a feature , we can always
transform where:

.

.

Fitting :

x ∈ ℝ
x ↦ ϕ(x)

ϕ(x) = (1 x x2 … xd)
w⊤ϕ(x) = w0 + w1x + w2x2 + … + wdxd

d = 1

w⊤ϕ(x) = w0 + w1x

Polynomial Regression

1D Example: Degree 2

For a feature , we can always
transform where:

.

.

Fitting :

x ∈ ℝ
x ↦ ϕ(x)

ϕ(x) = (1 x x2 … xd)
w⊤ϕ(x) = w0 + w1x + w2x2 + … + wdxd

d = 2

w⊤ϕ(x) = w0 + w1x + w2x2

Polynomial Regression

1D Example: Degree 3

For a feature , we can always
transform where:

.

.

Fitting :

x ∈ ℝ
x ↦ ϕ(x)

ϕ(x) = (1 x x2 … xd)
w⊤ϕ(x) = w0 + w1x + w2x2 + … + wdxd

d = 3

w⊤ϕ(x) = w0 + w1x + w2x2 + w3x3

Polynomial Regression

1D Example: Degree 9

For a feature , we can always
transform where:

.

.

Fitting :

x ∈ ℝ
x ↦ ϕ(x)

ϕ(x) = (1 x x2 … xd)
w⊤ϕ(x) = w0 + w1x + w2x2 + … + wdxd

d = 9

w⊤ϕ(x) = w0 + w1x + w2x2 + … + w10x9

Polynomial Regression

Underfit, Just Right, Overfit
Polynomial Regression

There can be an infinite number of ERMs!

Model Selection

It doesn’t take much to drive down
empirical risk using polynomials:

.

The more complex our model, the better
our empirical risk during training.

Recall:

R̂n(ĥn) ≈ 0

R̂n(h) =
1
n

n

∑
i=1

ℓ(h(x(i)), y(i))

Polynomial Regression

Model Selection

It doesn’t take much to drive down
empirical risk using polynomials:

.

The more complex our model, the better
our empirical risk during training.

But this doesn’t mean we’ll necessarily do
well on new data.

We call this overfitting.

R̂n(ĥn) ≈ 0

Polynomial Regression

Model Selection

It doesn’t take much to drive down
empirical risk using polynomials:

.

The more complex our model, the better
our empirical risk during training.

But this doesn’t mean we’ll necessarily do
well on new data.

We call this overfitting.

R̂n(ĥn) ≈ 0

Polynomial Regression

Model Selection

In practice, we can directly test a model on
“new data” (unseen in training).

Model selection on a validation set:

1. Split training set into train set
and validation set .

2. Train models of varying
complexity using .

3. Evaluate each of on .

4. Pick model with lowest validation loss.

Dn D1
n

D2
n

k f (1), …, f (k)

D1
n

f (1), …, f (k) D2
n

Polynomial Regression
Replace this with validation MSE!

Model Selection

Split training set into train set and
validation set

As long as is chosen without looking at
, we have an estimate of true risk.

Dn D1
n

D2
n

D1
n = {(x(1), y(1)), …, (x(n), y(n))}

D2
n = {(x̃(1), ỹ(1)), …, (x̃(m), ỹ(m))}

ĥn
D2

n

1
n

n

∑
j=1

ℓ(h(x̃(j)), ỹ(j)) ≈ 𝔼[ℓ(h(x), y)] = R(h)

Polynomial Regression
Replace this with validation MSE!

Outline

Model Complexity and Model Selection

Controlling Complexity with Regularization

 Regularization and Ridge Regression

 Regularization and Lasso Regression

Understanding Sparsity

Loss Functions: Regression

Loss Functions: Classification

ℓ2

ℓ1

25

Controlling Complexity
Feature Selection in Linear Regression

 complexity: number of non-zero coefficients.

Example: Linear Functions

Best subset selection: Choose subset of features that is best according to score (e.g. validation
error). Example with two features: train models using , , and .

ℓ0

ℋ1 ⊂ ℋ2 ⊂ … ⊂ ℋn ⊂ ℋ

ℋ = { linear functions using all features}

ℋd = { linear functions using fewer than d features }

{} {x1} {x2} {x1, x2}

This is not an efficient search algorithm! subsets if total of features. 2d d

Controlling Complexity
Feature Selection in Linear Regression

Best subset selection: Choose subset of features that is best according to score (e.g. validation
error). Example with two features: train models using , , and .

 Objective that balances number of feature with performance:

 balances the training loss and the number of features used.

Adding an extra feature must be justified with improvement in training loss.

Larger : complex models penalized more heavily.

{} {x1} {x2} {x1, x2}

score(S) = train_loss(S) + λ S

λ

λ

λ

Complexity Penalty
Constrained ERM (Ivanov Regularization)

Goal: Balance the complexity of the hypothesis class and its training loss.

For complexity measure and fixed , the constrained ERM problem is:

Find using performance on validation data.

Each corresponds to different hypothesis classes. Could also write:

ℋ

Ω : ℋ → [0,∞) r ≥ 0

min
h∈ℋ

1
n

n

∑
i=1

ℓ(h(x(i)), y(i))

s.t. Ω(f) ≤ r

r

r min
h∈ℋr

1
n

n

∑
i=1

ℓ(h(x(i)), y(i))

Complexity Penalty
Penalized ERM (Tikhonov Regularization)

Goal: Balance the complexity of the hypothesis class and its training loss.

For complexity measure and fixed , the penalized ERM problem is:

Find using performance on validation data.

ℋ

Ω : ℋ → [0,∞) r ≥ 0

min
h∈ℋ

1
n

n

∑
i=1

ℓ(h(x(i)), y(i)) + λΩ(h)

λ

Penalized vs. Constrained Optimization
In General

Let be any performance measure of (e.g. empirical risk).

For many and , constrained and penalized regularization are “equivalent”:

For any , is in for some .

For any , is in for some .

In practice, both approaches are effective.

Penalized regularization convenient because it’s an unconstrained optimization problem.

L : ℋ → ℝ h

L Ω

r > 0 h*r ∈ arg min
h∈ℋ

L(h) s.t. Ω(h) ≤ r arg min
h∈ℋ

L(h) + λΩ(h) λ > 0

λ > 0 h*λ ∈ arg min
h∈ℋ

L(h) + λΩ(h) arg min
h∈ℋ

L(h) s.t. Ω(h) ≤ r r > 0

Complexity Penalty
Penalized ERM (Tikhonov Regularization)

Goal: Balance the complexity of the hypothesis class and training loss.

For complexity measure and fixed , the penalized ERM problem is:

Setting as “number of features” is not differentiable and hard to optimize.

What other measures of complexity can we use?

ℋ

Ω : ℋ → [0,∞) r ≥ 0

min
h∈ℋ

1
n

n

∑
i=1

ℓ(h(x(i)), y(i)) + λΩ(h)

Ω(⋅)

Outline

Model Complexity and Model Selection

Controlling Complexity with Regularization

 Regularization and Ridge Regression

 Regularization and Lasso Regression

Understanding Sparsity

Loss Functions: Regression

Loss Functions: Classification

ℓ2

ℓ1

32

“Soft” Selection
Linear Regression

Input space:

Output space:

Loss Function:

Hypothesis Class:

Imagine having a weight for each feature dimension.

In linear regression, model weights multiply each feature dimension.

If is close to zero, then it means we aren’t using feature .

𝒳 = ℝd

𝒴 = ℝ

ℓ(̂y, y) = (̂y − y)2

ℋ = {h : ℝd → ℝ : h(x) = w⊤x, w ∈ ℝd}

wi i

Linear Regression
Running Example

Input space: ; Output space: ; Loss Function:

Hypothesis Class:

Given dataset we want to minimize the empirical risk:

This often overfits, especially when !

(e.g. in NLP one can have 1M features for 10K documents)

𝒳 = ℝd 𝒴 = ℝ ℓ(̂y, y) = (̂y − y)2

ℋ = {h : ℝd → ℝ : h(x) = w⊤x, w ∈ ℝd}

Dn := {(x(1), y(1)), …, (x(n), y(n))}

R̂n(w) =
1
n

n

∑
i=1

(w⊤x(i) − y(i))2

d ≫ n

34

Ridge Regression
Constrained and Penalized ERM

The (penalized form) ridge regression solution with regularization parameter is

where is the squared -norm.

The (constrained form) ridge regression solution with regularization parameter is

λ ≥ 0

ŵ ∈ arg min
w∈ℝd

1
n

n

∑
i=1

(w⊤x(i) − y(i))2 + λ∥w∥2
2

∥w∥2
2 = w2

1 + … + w2
d ℓ2

r2 ≥ 0

ŵ ∈ arg min
∥w∥2

2≤r2

1
n

n

∑
i=1

(w⊤x(i) − y(i))2

35

Ridge Regression
Penalized ERM

The (penalized form) ridge regression solution with regularization parameter is

where is the squared -norm.

Equivalent to linear least squares regression with .

 regularization can be used for other models too (e.g. neural networks).

λ ≥ 0

ŵ ∈ arg min
w∈ℝd

1
n

n

∑
i=1

(w⊤x(i) − y(i))2 + λ∥w∥2
2

∥w∥2 = w2
1 + … + w2

d ℓ2

λ = 0

ℓ2

36

Sensitivity to Inputs
Effect of Regularization

 is Lipschitz continuous with Lipschitz constant : when moving from to ,
changes no more than , because:

So regularization controls the maximum rate of change of .

Other norms also provide a bound on due to equivalence of norms:

For any , such that .

h(x) = ŵ⊤x L = ∥ŵ∥2 x x + Δ h
L∥Δ∥

h(x + Δ) − h(x) = ŵ⊤(x + Δ) − ŵ⊤x

= ŵ⊤Δ ≤ ∥ŵ∥∥Δ∥

ℓ2 h

L

p ∃C > 0 ∥ŵ∥2 ≤ C∥ŵ∥p

37

Cauchy-Schwarz Inequality

Linear vs. Ridge Regression
Analytical Comparison

Linear objective:

in matrix-vector form:

Gradient:

Closed-form solution:

 if is full rank.

1
2

n

∑
i=1

(w⊤x(i) − y(i))2

1
2

∥Xw − y∥2
2

∇L(w) = X⊤(Xw − y)

ŵ = (X⊤X)−1X⊤y X

38

Ridge objective:

in matrix-vector form:

Gradient:

Closed-form solution:

(is always invertible)

1
2

n

∑
i=1

(w⊤x(i) − y(i))2 +
λ
2

∥w∥2
2

1
2

∥Xw − y∥2
2 +

λ
2

∥w∥2
2

∇L(w) = X⊤(Xw − y) + λw

ŵ = (X⊤X + λI)−1X⊤y

X⊤X + λI

Ridge Regression
Constrained and Penalized ERM

The (penalized form) ridge regression solution with regularization parameter is

where is the squared -norm.

The (constrained form) ridge regression solution with regularization parameter is

λ ≥ 0

ŵ ∈ arg min
w∈ℝd

1
n

n

∑
i=1

(w⊤x(i) − y(i))2 + λ∥w∥2
2

∥w∥2 = w2
1 + … + w2

d ℓ2

r2 ≥ 0

ŵ ∈ arg min
∥w∥2

2≤r2

1
n

n

∑
i=1

(w⊤x(i) − y(i))2

39

Regularization Path Comparison

For , .

For , .

ŵr ∈ arg min
∥w∥2

2≤r2

1
n

n

∑
i=1

(w⊤x(i) − y(i))2

ŵ ∈ arg min
w∈ℝd

1
n

n

∑
i=1

(w⊤x(i) − y(i))2

r = 0 ∥ŵr∥2/∥ŵ∥2 = 0

r = ∞ ∥ŵr∥2/∥ŵ∥2 = 1

Linear vs. Ridge

Modified from Hastie, Tibshirani, and Wainwright’s Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.

Outline

Model Complexity and Model Selection

Controlling Complexity with Regularization

 Regularization and Ridge Regression

 Regularization and Lasso Regression

Understanding Sparsity

Loss Functions: Regression

Loss Functions: Classification

ℓ2

ℓ1

41

Lasso Regression
Constrained and Penalized ERM

The (penalized form) lasso regression solution with regularization parameter is

where is the -norm.

The (constrained form) lasso regression solution with regularization parameter is

λ ≥ 0

ŵ ∈ arg min
w∈ℝd

1
n

n

∑
i=1

(w⊤x(i) − y(i))2 + λ∥w∥1

∥w∥1 = w1 + … + wd ℓ1

r ≥ 0

ŵ ∈ arg min
∥w∥1≤r

1
n

n

∑
i=1

(w⊤x(i) − y(i))2

42

Regularization Path Comparison

For , .

For , .

ŵr ∈ arg min
∥w∥1≤r

1
n

n

∑
i=1

(w⊤x(i) − y(i))2

ŵ ∈ arg min
w∈ℝd

1
n

n

∑
i=1

(w⊤x(i) − y(i))2

r = 0 ∥ŵr∥1/∥ŵ∥1 = 0

r = ∞ ∥ŵr∥1/∥ŵ∥1 = 1

Linear vs. Ridge

Modified from Hastie, Tibshirani, and Wainwright’s Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.

Regularization Path Comparison
Lasso vs. Ridge

Lasso Regression
Pros and Cons

Pros:

Output weights are sparse which can mean a more interpretable model.

More intuitive reduction in model complexity.

Cons:

No closed form solution because is not differentiable (unlike ridge regression).

Can solve Lasso with iterative methods, but generally not as quickly as ridge regression.

∥w∥1

45

Outline

Model Complexity and Model Selection

Controlling Complexity with Regularization

 Regularization and Ridge Regression

 Regularization and Lasso Regression

Understanding Sparsity

Loss Functions: Regression

Loss Functions: Classification

ℓ2

ℓ1

46

Lasso Regression
Benefits of Sparsity

A sparse solution is one in which many entries are . Why is this useful?

Faster to compute features; cheaper to measure or annotate them.

Less memory to store features (deployment on mobile device).

Interpretability: identifies the important features.

Prediction function may generalize better (model is less complex, i.e. is “smaller”).

ŵ 0

ℋ

47

Intuition

To visualize, suppose .

Geometrically,

 is a plane through
the origin in .

 is a loss surface in
for every possible plane.

𝒳 = ℝ2

R̂n(w) =
1
n

n

∑
i=1

(w⊤x(i) − y(i))2

w⊤x = w1x1 + w2x2
ℝ3

R̂n(w) : ℝ2 → ℝ ℝ3

Parameter Space

https://samuel-deng.github.io/assets/1003/lec3_regplane.html
https://samuel-deng.github.io/assets/1003/lec3_regplane.html

Intuition

To visualize, suppose .

Geometrically,

 is a plane through
the origin in .

 is a loss surface in
for every possible plane.

𝒳 = ℝ2

R̂n(w) =
1
n

n

∑
i=1

(w⊤x(i) − y(i))2

w⊤x = w1x1 + w2x2
ℝ3

R̂n(w) : ℝ2 → ℝ ℝ3

Parameter Space

https://samuel-deng.github.io/assets/1003/lec3_regobjective.html
https://samuel-deng.github.io/assets/1003/lec3_regobjective.html

Intuition

To visualize, suppose .

Geometrically,

 is a plane through
the origin in .

 is a loss surface in
for every possible plane.

𝒳 = ℝ2

R̂n(w) =
1
n

n

∑
i=1

(w⊤x(i) − y(i))2

w⊤x = w1x1 + w2x2
ℝ3

R̂n(w) : ℝ2 → ℝ ℝ3

Parameter Space

−1 0 1 2 3 40

1

2

3

4

5

15

20

25

30

35

40

45

w1

w2

Intuition

For visualization, restrict to:

Represent by .

Where are the sparse solutions?

ℋ = {h(x) = w1x1 + w2x2}

ℋ {(w1, w2) ∈ ℝ2}

 and Constraintsℓ1 ℓ2

Intuition

For visualization, restrict to:

Represent by .

Where are the sparse solutions?

ℋ = {h(x) = w1x1 + w2x2}

ℋ {(w1, w2) ∈ ℝ2}

 and Constraintsℓ1 ℓ2

Empirical Risk in ℝ2

Visualization for Square Loss

In matrix form: .

Minimizer:

For any , by “completing square”:

The such that exceeds by are ellipsoids centered at :

R̂n(w) =
1
n

∥Xw − y∥2

ŵ = (X⊤X)−1X⊤y

w ∈ ℝd

R̂n(w) =
1
n

(w − ŵ)⊤(X⊤X)(w − ŵ) + R̂n(ŵ)

w R̂n(w) R̂n(ŵ) c > 0 ŵ

{w : R̂n(w) = c + R̂n(ŵ)} = {w : (w − ŵ)⊤X⊤X(w − ŵ) = nc}

Visualization for Square Loss

The such that exceeds by
 are ellipsoids centered at :

w R̂n(w) R̂n(ŵ)
c > 0 ŵ

{w : R̂n(w) = c + R̂n(ŵ)}
= {w : (w − ŵ)⊤X⊤X(w − ŵ) = nc}

−1 0 1 2 3 40

1

2

3

4

5

15

20

25

30

35

40

45

w1

w2

Empirical Risk in ℝ2

Visualization

subject to:

ŵr ∈ arg min
w∈ℝ2

1
n

n

∑
i=1

(w⊤x(i) − y(i))2

w1 + w2 ≤ r

−4 −2 0 2 4

−4

−2

0

2

4

40

80

120

160

200

w1

w2

 Regularizationℓ1

Visualization

subject to:

ŵr ∈ arg min
w∈ℝ2

1
n

n

∑
i=1

(w⊤x(i) − y(i))2

w1 + w2 ≤ r

 Regularizationℓ1

https://samuel-deng.github.io/assets/1003/lec3_regl1.html
https://samuel-deng.github.io/assets/1003/lec3_regl1.html

Visualization

subject to:

ŵr ∈ arg min
w∈ℝ2

1
n

n

∑
i=1

(w⊤x(i) − y(i))2

w2
1 + w2

2 ≤ r

 Regularizationℓ2

−4 −2 0 2 4

−4

−2

0

2

4

40

80

120

160

200

w1

w2

Visualization

subject to:

ŵr ∈ arg min
w∈ℝ2

1
n

n

∑
i=1

(w⊤x(i) − y(i))2

w2
1 + w2

2 ≤ r

 Regularizationℓ2

https://samuel-deng.github.io/assets/1003/lec3_regl2.html
https://samuel-deng.github.io/assets/1003/lec3_regl2.html

Geometric Intuition

Suppose (orthogonal features).

Then, contours are perfect circles.

The in red regions are closest to
corners in the ball.

Geometric intuition: Projection onto
diamond (ball) encourages solutions at
corners.

X⊤X = I

ŵ
ℓ1

ℓ1

Sparsity

Geometric Intuition

Suppose (orthogonal features).

Then, contours are perfect circles.

Geometric intuition: Projection onto
sphere (ball) encourages solutions
equally.

X⊤X = I

ℓ2

Sparsity

Geometric Intuition

Generalize to :

Note: is only a norm for but
not for .

When , the constraint is non-
convex (so hard to optimize).

 defined as number of non-zero
weights, i.e. subset selection.

ℓq

(∥w∥q)q = w1
q

+ w2
q

∥w∥q q ≥ 1
q ∈ (0,1)

q < 1 ℓq

ℓ0

 Regularizationℓq
q = 4 q = 2

q = 1 q = 1/2

q = 0

Other Forms of Regularization
Implicit Regularization, Weight Decay, etc.

In general, regularization is a term that describes
ways to “bias” a problem with infinitely many
solutions to a smaller subset of solutions.

Implicit regularization. Properties of the
optimization algorithm lead to “simple”
solutions.

Data augmentation. Randomly modify
training data in by an operation, usually used
in deep learning (e.g. randomly cropping
images).

https://samuel-deng.github.io/assets/1003/lec2_nonconvex_surface_gd.html
https://samuel-deng.github.io/assets/1003/lec2_nonconvex_surface_gd.html

Outline

Model Complexity and Model Selection

Controlling Complexity with Regularization

 Regularization and Ridge Regression

 Regularization and Lasso Regression

Understanding Sparsity

Loss Functions: Regression

Loss Functions: Classification

ℓ2

ℓ1

63

Regression
Problem Instance

Input space:

Action space:

Outcome space:

 is the predicted value (the action).

 is the observed value (the outcome).

𝒳 = ℝd

𝒜 = ℝ

𝒴 = ℝ

̂y

y

64

Distance Based Loss
Definition

In general, loss functions take the form:

Regression losses typically depend on the residual .

A loss function is distance-based if:

1. It only depends on the residual: for some

2. It is zero when the residual is zero: .

(̂y, y) ↦ ℓ(̂y, y) ∈ ℝ

r = y − ̂y

ℓ(̂y, y) = ψ(y − ̂y) ψ : ℝ → ℝ

ψ(0) = 0

65

Examples

Square () loss: .

Absolute () loss: .

Outliers typically have large residuals.

Square loss more affected by outliers
than absolute loss.

r = y − ̂y

ℓ2 ℓ(r) = r2

ℓ1 ℓ(r) = r

Loss Functions

66

1 0 1 1

5 0 5 25

10 0 10 100

50 0 50 2500

y ̂y |y − ̂y | (y − ̂y)2

Examples

Square () loss: .

Absolute loss: .

Outliers typically have large residuals.

Square loss more affected by outliers
than absolute loss.

r = y − ̂y

ℓ2 ℓ(r) = r2

ℓ(r) = r

Loss Functions

67

Robustness

Square () loss: .

Absolute loss: .

Robustness refers to how affected a
learning algorithm is by outliers.

r = y − ̂y

ℓ2 ℓ(r) = r2

ℓ(r) = r

Loss Functions

68

Robustness

Square loss:

(not robust)

Absolute loss:

(not differentiable)

Huber loss: Quadratic for and
linear for

(robust and differentiable)

ℓ(r) = r2

ℓ(r) = r

r ≤ δ
r > δ

Loss Functions

69

Outline

Model Complexity and Model Selection

Controlling Complexity with Regularization

 Regularization and Ridge Regression

 Regularization and Lasso Regression

Understanding Sparsity

Loss Functions: Regression

Loss Functions: Classification

ℓ2

ℓ1

70

Classification
Problem Instance

Input space:

Action space:

Outcome space:

We’ve already seen the zero-one loss for :

But let’s allow real-valued predictions .

𝒳 = ℝd

𝒜 = {−1,1}

𝒴 = {−1,1}

f : 𝒳 → {−1,1}

ℓ(f(x), y) = 1{f(x) ≠ y}

f : 𝒳 → ℝ

71

Geometric Picture

Input space:

Action space:

Outcome space:

Geometrically: find a decision boundary
between the classes.

𝒳 = ℝd

𝒜 = {−1,1}

𝒴 = {−1,1}

Classification

Geometric Picture

Input space:

Action space:

Outcome space:

We will focus on methods that induce
linear decision boundaries.

𝒳 = ℝd

𝒜 = {−1,1}

𝒴 = {−1,1}

Classification

Geometric Picture

Input space:

Action space:

Outcome space:

We will focus on methods that induce
linear decision boundaries.

Most problems are not linearly separable
(i.e. there exists a hyperplane separating
the and points).

𝒳 = ℝd

𝒜 = {−1,1}

𝒴 = {−1,1}

y = − 1 y = 1

Classification

Classification
Problem Instance

Input space:

Action space:

Outcome space:

But let’s allow real-valued predictions .

Predict

 Predict

𝒳 = ℝd

𝒜 = ℝ

𝒴 = {−1,1}

f : 𝒳 → ℝ

f(x) > 0 ⟹ 1

f(x) < 0 ⟹ −1

75

Classification
Problem Instance

Input space:

Action space:

Outcome space:

For a linear function :

Predict

 Predict

𝒳 = ℝd

𝒜 = ℝ

𝒴 = {−1,1}

f(x) = w⊤x

w⊤x > 0 ⟹ 1

w⊤x < 0 ⟹ −1

76

Classification
Score Function

Outcome space: Action space:

For a real-valued prediction function , the value is called the score for input .

In this context, we can call a score function.

The magnitude of the score can be interpreted as confidence in our prediction.

𝒴 = {−1,1} 𝒜 = ℝ

f : 𝒳 → ℝ f(x) x

f

77

Margin
Definition

The margin for a predicted score and the true class is .

With a score function , the margin is .

If and are the same sign, prediction is correct and margin is positive.

If and have different sign, prediction is incorrect and margin is negative.

We want to find that maximizes the margin.

Many classification losses only depend on the margin (margin-based losses).

̂y y ∈ {−1,1} y ̂y

f : 𝒳 → ℝ yf(x)

y ̂y

y ̂y

f

78

Classification Losses
Zero-One Loss

The zero-one loss for is .

We can rewrite this in terms of the margin and score function as

.

The empirical risk for zero-one loss, given dataset :

h(x) = sign(f(x)) := {1 if f(x) ≥ 0
−1 if f(x) < 0

h : 𝒳 → {−1,1} ℓ(h(x), y) = 1{h(x) ≠ y}

ℓ(f(x), y) := 1{yf(x) ≤ 0}

Dn

R̂n(f) =
1
n

n

∑
i=1

1{y(i) f(x(i)) ≤ 0}

79

Classification Losses
Zero-One Loss

The empirical risk for zero-one loss, given dataset :

Non-convex, non-differentiable, and discontinuous.

Optimization problem is NP-hard (computationally infeasible).

Dn

R̂n(f) =
1
n

n

∑
i=1

1{y(i) f(x(i)) ≤ 0}

80

Zero-One Loss

Margin:

Zero-one loss:

-axis is margin:

 classification is correct.

m = ̂yy

ℓ0−1(m) := 1{m ≤ 0}

x

m > 0 ⟺

Classification Losses

81

Hinge Loss

Margin:

Hinge loss:

Hinge loss is convex, upper bound on
zero-one loss.

Not differentiable at .

m = ̂yy

ℓhinge(m) := max(1 − m,0)

m = 1

Classification Losses

82

Hinge Loss
(Soft-Margin) Support Vector Machine

Hypothesis class:

Loss: (hinge loss)

Regularizer:

Empirical risk minimization:

ℋ = {hw(x) = w⊤x : w ∈ ℝd}

ℓhinge(m) = max(1 − m,0)

ℓ2

min
w∈ℝd

1
n

n

∑
i=1

max(1 − y(i)hw(x(i)),0) + λ∥w∥2
2

83

Perceptron Loss

Margin:

Perceptron loss:

Hinge loss, with “hinge at zero.”

Not an upper bound on zero-one loss,
but it is convex.

m = ̂yy

ℓperc(m) := max(−m,0)

Classification Losses

84

Perceptron Loss
Perceptron Algorithm

Hypothesis class:

“SGD” on the perceptron loss (perceptron loss) is equivalent to:

Initialize .

While there exists that is misclassified:

For :

If (wrong prediction):

Update .

ℋ = {hw(x) = w⊤x : w ∈ ℝd}

ℓperc(m) = max(−m,0)

w ← 0

(x(i), y(i))

(x(i), y(i)) ∈ Dn

y(i)w⊤x(i) < 0

w ← w + y(i)x(i)

85

Logistic Loss

Margin:

Logistic/Log loss:

Logistic loss is differentiable.

Always rewards more margin (loss never).

m = ̂yy

ℓlog(m) := log(1 + e−m)

0

Classification Losses

86

Logistic Regression

Suppose we want some (to
be interpreted as probability of or).

The sigmoid function :

Useful property:

.

h : ℝd → [0,1]
−1 1

ϕ : ℝ → [0,1]

ϕ(z) :=
1

1 + exp(−z)

1 − ϕ(z) = ϕ(−z)

Logistic Loss

87

Logistic Regression

Compose sigmoid with linear functions:

If , is close to .

If , is close to .

If , is close to .

ϕ(z) :=
1

1 + exp(−z)

ℱsig := {x ↦ ϕ(w⊤x) : w ∈ ℝd}

w⊤x ≫ 0 ϕ(w⊤x) 1

w⊤x ≪ 0 ϕ(w⊤x) 0

|w⊤x | ≈ 0 ϕ(w⊤x) 1/2

Logistic Loss

88

Logistic Loss
Logistic Regression

 and hypothesis class

What’s a reasonable loss function?

If , we want large (probability of predicting).

If , we want small (probability of predicting) large.

Important property of sigmoid: .

If , we want large.

ϕ(z) :=
1

1 + exp(−z)
ℱsig := {x ↦ ϕ(w⊤x) : w ∈ ℝd}

y = 1 ϕ(w⊤x) 1

y = − 1 ϕ(w⊤x) −1 ⟹ 1 − ϕ(w⊤x)

1 − ϕ(z) = ϕ(−z)

y = − 1 1 − ϕ(w⊤x) = ϕ(−w⊤x)

89

Logistic Loss
Logistic Regression

What’s a reasonable loss function?

If , we want large (probability of predicting).

If , we want large (probability of predicting).

Summary. For , we want large Smaller loss for larger .

y = 1 ϕ(w⊤x) 1

y = − 1 ϕ(−w⊤x) −1

y ∈ {−1,1} ϕ(yw⊤x) ⟹ ϕ(yw⊤x)

−log(ϕ(yw⊤x)) = − log (1
1 + exp(−yw⊤x)) = log(1 + exp(−yw⊤x))

90

Logistic Loss

Margin:

Logistic/Log loss:

Logistic loss is differentiable.

Always rewards more margin (loss never).

m = ̂yy

ℓlog(m) := log(1 + e−m)

0

Classification Losses

91

Logistic Loss
Logistic Regression

Hypothesis class:

Loss: (logistic loss)

Empirical risk minimization:

Minimizing this objective is known as logistic regression (a linear classification method).

ℋ = {hw(x) = w⊤x : w ∈ ℝd}

ℓlog(m) := log(1 + e−m)

min
w∈ℝd

1
n

n

∑
i=1

log(1 + exp(−y(i)w⊤x(i)))

92

Square Loss
Square loss for classification?

Recall the square loss: .

For , we have , so we can write this in terms of the margin:

ℓ(f(x), y) = (f(x) − y)2

y ∈ {−1,1} y2 = 1

ℓ(f(x), y) = (f(x) − y)2 = f2(x)y2 − 2f(x)y + 1 = (1 − f(x)y)2 = (1 − m)2

93

Square Loss

Margin:

Square loss:

Convex and differentiable.

Heavily penalizes outliers (e.g. mislabeled
examples).

m = ̂yy

ℓsquare(m) := (1 − m)2

Classification Losses

94

Convexity

All of these losses have a property in
common: convexity.

ℓhinge(m) := max(1 − m,0)

ℓperc(m) := max(−m,0)

ℓlog(m) := log(1 + e−m)

ℓsquare(m) := (1 − m)2

Classification Losses

95

Outline

Model Complexity and Model Selection

Controlling Complexity with Regularization

 Regularization and Ridge Regression

 Regularization and Lasso Regression

Understanding Sparsity

Loss Functions: Regression

Loss Functions: Classification

ℓ2

ℓ1

96

