DS-GA 1003: Machine Learning

Lecture 3: Regularization and Loss Functions

Slides adapted from material from David Rosenberg.



Logistics & Announcements

PS 1 due today! Due 11:59 PM ET, late deadline is Thursday, 11:59 PM ET.

PS 2 release. Due in two weeks, Tuesday, Feb. 17 11:59 PM ET.

Looks long! But most of the problems are review/exposition and subproblems are short.
Lab this week. Sam will be doing lab this week to lighten up the load for next lecture.
Lecture for Week 5 (02/17) is cancelled due to President’s Day.

Lecture on Week 6 (02/24) will be remote and recorded. Sam out of town for conference :(

Math review videos. Stay tuned for several linear algebra review videos!
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Model Complexity and Model Selection

Controlling Complexity with Regularization
£, Regularization and Ridge Regression

1 Regularization and Lasso Regression
Understanding Sparsity

Loss Functions: Regression

| oss Functions: Classification



Excess Risk

Full Decomposition

R(h%) — R(h*)

We receive h, from an algorithm.

Excess risk of A,
i o

R(h,) — R(h*) = S R — s

R(h,) — R(h,) + R(h,) — R(h%) + R(h%) — R(h*)

All functions

Opt. error est. error approx. error

_ i R(h,) — R(h%)



Estimation-Approximation Tradeoft

Recurring Theme

R(h,) — R(h,) + R(h,) — R(h%) + R(h%) — R(h*)

Opt. error est. error approx. error

Estimation error: Asn — oo, typically R(]/;tn) — R(h;}) — 0.

Approximation error: Controlled by choosing a good hypothesis class #.

Optimization error: Can we make this small using an efficient algorithm?

How does choosing the “size”/"complexity” of Z aftfect estimation and approximation error?



Supervised Learning

Excess Risk Formalization

1. Collect training dataset, a We receive h_ from an algorithm.
collection of labeled input-output

pairs.

Excess risk of i, :

2. Decide on the template of the Representation

hypothesis mapping that will map R(it ) — R(h*) =
inputs to outputs. &

3. A learning algorithm takes the
labeled training data as input and - - _ - _ )
outputs a hypothesis. opt. error est. error appProx. error

R(h,) — R(h,) + R(h,) — R(h%) + R(h%) — R(h*)

Optimization

4. The hypothesis predicts on new,  Generalization Optimization Generalization Representation

unseen data which we hope it does
well on, under a notion of loss.



Supervised Learning

Excess Risk Formalization

1. Collect training dataset, a
collection of labeled input-output
pairs.

2. Decide on the template of the
hypothesis mapping that will map
Inputs to outputs.

Representation

3. A learning algorithm takes the
labeled training data as input and
outputs a hypothesis.

Optimization

4. The hypothesis predicts on new,  Generalization
unseen data which we hope it does
well on, under a notion of loss.

We receive h, from an algorithm.
Excess risk of i, :
R(h,) = R(h*) =

R(h,) — R(h,) + R(h,) — R(h%) + R(h%) — R(h*)

\ - 7 \ - > 4

Opt. error est. error approx. error

Optimization Generalization Representation

How do we vary the “size” of Z to trade
estimation error off with approximation error?



Excess Risk

Intuition: Size of #

R(h,) — R(h*) = R(h,) — R(h%) + R(h%) — R(h*)

est. error AP Prox. error

R(h3) + R(7*) R(n%) 1 R(h*) R(n) = R(h*)

R(h,) — R(h%,)

R(h,) — R(h%)

R(h,) — R(h%)
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Complexity of #
Trade-off

There can be an infinite number of ERMs!

Regularization: taking a problem with infinitely many solutions and biasing to a smaller (“less
complex”) subset of solutions.

All functions All functions



Controlling Complexity
General Approach

1. Learn a sequence of models varying in complexity from the training data.

H \CHC...CH CH

Example: Polynomial Functions
# = { all polynomial functions}
# ;= { all polynomials of degree < d}

2. Select one of these models based on a score (e.g. validation error).



Controlling Complexity

Examples for Different Hypotheses

Number of variables/features.
Depth of a decision tree.

Degree of a polynomial.
How about for linear decision functions: x = wx; + ... + wx,;?
£y complexity: number of non-zero coetfticients.

Z1 ("lasso”) complexity: Z |wl-| for coefficients wy, ..., w,.

Z, ("ridge”) complexity: Z wl-2 for coefficients wy, ..., w,.



Linear (Least Squares) Regression

Running Example

Input space: & = R?

Hypothesis class is parametrized by w € R?

Output space: ¥ = R Action space: &/ = % =R
Loss Function: 2(3,y) = (5 — y)?
Hypothesis Class: #Z = {h: R? = R : h(x) = w'x,w € RY)

Given dataset D, := (WD, yMy o (x™, y™)} we want to minimize the empirical risk:

n | & . . n 1
R (W) = — Z (w'x® —yD)2 or R (w) = —||Xw — y||> with X € R"™4, y € R".
n i1 n
Objective in scalar form Objective in matrix-vector form

12



Polynomial Regression
1D Example

For a feature x € R, we can always transform x — ¢(x) where

Pp(x) = (1 X x> ... xd)-

hen, fitting a linear model atop transtormed teatures (¢(xy), yy), ..., (¢(x,), y,) is a polynomial:

wl(x) = wy + wix + wox® + ... + wx?.



Polynomial Regression
1D Example

For a feature x € R, we can always
transform x = ¢(x) where:

Pp(x) = (1 X xZ ... xd)-

Then, fitting a linear model atop
transformed features

(P(x)), V1), ..., (P(x,),y,) is a polynomial:

wl(x) = wy + wix + wyx? + ...+ wx?
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Polynomial Regression
1D Example: Degree 1

For a feature x € R, we can always
transform x = ¢(x) where:

Pp(x) = (1 X xZ ... xd)-
wl(x) = wy + wix + wox? + ...+ wx?

Fitting d = 1:

w!(x) = Wy + WX
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Polynomial Regression
1D Example: Degree 2

For a feature x € R, we can always
transform x = ¢(x) where:

Pp(x) = (1 X xZ ... xd)-

wl(x) = wy + wix + wox? + ...+ wx?

Fitting d = 2:

wh(x) = wy + wix + wyx?
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Polynomial Regression
1D Example: Degree 3

For a feature x € R, we can always
transform x = ¢(x) where:

Pp(x) = (1 X xZ ... xd)-

wl(x) = wy + wix + wox? + ...+ wx?

Fitting d = 3:

w T p(x) = wy + wix + wox? + wyx?
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Polynomial Regression
1D Example: Degree 9

For a feature x € R, we can always
transform x = ¢(x) where:

Pp(x) = (1 X xZ ... xd)-

wl(x) = wy + wix + wox? + ...+ wx?

Fittingd = 9:

W h(x) = Wy + WX + wox® + ... + wygx”
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Polynomial Regression
Undertit, Just Right, Overtit

1.10

1.10

1.05 -

1.00 -

0.95 A

0.90 -+

0.85 A

0.80 A

0.75

linear model fit

- trye function

® training data
X test data

1.05 A

1.00 A

0.95 ~

0.90 -+

0.85

0.80 A

0.75

degree 3 fit

- trye function

® training data
X test data

0.70

0.0 0.2

0.4

0.6

0.8

. 0.70
1.0

0.0

0.2

0.4

0.6

0.8 1.0

1.10

1.05 -

1.00 -

0.95 A

0.90 -+

0.85 A

0.80 A

0.75

degree 9 fit

- trye function

® training data
X test data

0.70

0.0 0.2

There can be an infinite number of ERMs!

0.4

0.6

0.8

1.0




Polynomial Regression

Model Selection

't doesn’t take much to drive down
empirical risk using polynomials:

R (h) = 0.

The more complex our model, the better
our empirical risk during training.

Recall:

A 1 & o
_ 2 )y (@
R, (h) . i:zf £(h(x"), y)
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Polynomial Regression

Model Selection

't doesn’t take much to drive down
empirical risk using polynomials:

R (h) = 0.

The more complex our model, the better
our empirical risk during training.

But this doesn’t mean we'll necessarily do
well on new data.

We call this overfitting.
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Polynomial Regression o aing
—>— test MSE
Model Selection
0.0020 -
't doesn’t take much to drive down ,\
empirical risk using polynomials: 2 0.0015-
©
R, (h,) =~ 0. 5
\g 0.0010 -
The more complex our model, the better G
our empirical risk during training.
0.0005 -
But this doesn’t mean we'll necessarily do
well on new data.
0.0000 -
We call this overfitting. ’ ; . . - A

degree of polynomial



Polynomial Regression o~ aing s
—>— test MSE
Model Selection
0.0020 -
In practice, we can directly test a model on
"new data” (unseen in training). @ 0.0015 -
=
)
Model selection on a validation set: ©
=1
| < 0.0010 -
1. Split training set D, into train set D, :
and validation set D?.
. . 0.0005 -
2. Train k models U, ..., f® of varying 5
complexity using D,
3. Evaluate each of f, ..., f® on D 0-0000~

2 4 6 8 10 12
4. Pick model with lowest validation loss. degree of polynomial



Polynomial Regression

Model Selection

Split training set D, into train set D!and
validation set D?

D,,} — {(—x(l)a y(l))a ) (X(I”l), y(n))}
D? = {(&D,51), ..., @™, 5m))

As long as l%n is chosen without looking at
D?, we have an estimate of true risk.

% Y @), 59) ~ E[£(h(x), y)] = R(h)
j=1

N

squared |oss

~—~
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—&— training MSE
== test MSE
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Controlling Complexity

Feature Selection in Linear Regression

£y complexity: number of non-zero coefticients.
H CHC...CH,CH
Example: Linear Functions
# = { linear functions using all features}

# ;= { linear functions using fewer than d features }

Best subset selection: Choose subset of features that is best according to score (e.g. validation
error). Example with two features: train models using {}, {x;}, {x,} and {x;, x,}.

This is not an efficient search algorithm! 2¢ subsets if total of d features.



Controlling Complexity

Feature Selection in Linear Regression

Best subset selection: Choose subset of features that is best according to score (e.g. validation
error). Example with two features: train models using {}, {x;}, {x,} and {x;, x,}.

Objective that balances number of feature with performance:
score(S) = train_loss(S) + 4 ‘S‘
A balances the training loss and the number of features used.

Adding an extra feature must be justified with A improvement in training loss.

Larger A: complex models penalized more heavily.



Complexity Penalty

Constrained ERM (lvanov Regularization)

Goal: Balance the complexity of the hypothesis class #Z and its training loss.

For complexity measure Q : #Z — [0,00) and fixed r > 0, the constrained ERM problem is:

| & o
min — ) £(h(x?),y?)
heZX N 1

st Q ]:) <7

Find r using performance on validation data.

1 « . .
Each r corresponds to different hypothesis classes. Could also write: min — Z £(h(xY), yV)
hez, N
m =1



Complexity Penalty
Penalized ERM (Tikhonov Regularization)

Goal: Balance the complexity of the hypothesis class #Z and its training loss.

For complexity measure Q : #Z — [0,00) and fixed r > 0, the penalized ERM problem is:

min — D C(h(xD), y D) + 2Q(h)

he# Nn “
=1

Find A using performance on validation data.



Penalized vs. Constrained Optimization

In General

Let L : #Z — R be any performance measure of h (e.g. empirical risk).

For many L and €, constrained and penalized regularization are "equivalent”:

Forany r > 0, h* € argmin L(h) s.t. Q(h) < risinargmin L(h) + AQ(h) for some 4 > 0.
he# he#

Forany 4 > 0, hj € arg min L(h) + AQ(h) is in argmin L(h) s.t. Q(h) < rtforsomer > 0.
he#x he#

In practice, both approaches are effective.

Penalized regularization convenient because it's an unconstrained optimization problem.



Complexity Penalty
Penalized ERM (Tikhonov Regularization)

Goal: Balance the complexity of the hypothesis class #Z and training loss.

For complexity measure Q : #Z — [0,00) and fixed r > 0, the penalized ERM problem is:

min — D C(h(xD), y D) + 2Q(h)

he# Nn “
=1

Setting Q( - ) as “number of tfeatures” is not differentiable and hard to optimize.

What other measures of complexity can we use?
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"Soft"” Selection

Linear Regression

Input space: & = R?
Output space: = R

Loss Function: £(y,y) = (y — Y)z

Hypothesis Class: # = {h: R > R : h(x) = w'x,w € R?)
Imagine having a weight for each feature dimension.

In linear regression, model weights multiply each feature dimension.

f w; is close to zero, then it means we aren’t using feature i.



Linear Regression

Running Example

Input space: & = R%; Output space: ¥ = R ; Loss Function: 2(3,y) = (5 — y)?
Hypothesis Class: # = {h: R = R : h(x) = w'x,w € RY)
Given dataset D, := (WD, yMy o (x™, y™)} we want to minimize the empirical risk:

A & o
R,(w) == ) (wTx®—yOy
& =1

This often overtits, especially when d > n!

(e.g.in NLP one can have 1M features for 10K documents)

34



Ridge Regression

Constrained and Penalized ERM

The (penalized form) ridge regression solution with regularization parameter 4 > O is

1 . ,
W E drg min — Z (wa(l) — y(l))2 4 /IHWH%
weRd T i—1

where HWH% = W12 + ...+ WC% is the squared &,-norm.

The (constrained form) ridge regression solution with regularization parameter > > 0 is

] « . .
W € arg min — Z (w T x@ — y0)2
Iwli3<r? 52,

35



Ridge Regression

Penalized ERM

The (penalized form) ridge regression solution with regularization parameter 4 > O is

1 . .
W E drg min — Z (wa(l) — y(l))2 4 /IHWH%
weRd T i—1

where ||w]|? = W12 + ...+ WC% is the squared &,-norm.

Equivalent to linear least squares regression with 4 = 0.

£, regularization can be used for other models too (e.g. neural networks).

36



Sensitivity to Inputs

Effect of Regularization

h(x) = W'x is Lipschitz continuous with Lipschitz constant L = ||W||,: when moving from xtox + A, h
changes no more than L||A||, because:

h(x + A) — h(x) wix+ A)—w'x
\ |

/\T Vo

WTA| < WAl
Cauchy-Schwarz Inequality

So &, regularization controls the maximum rate of change ot A.

Other norms also provide a bound on L due to equivalence of norms:

Forany p, 3C > 0 such that [[w||, < C[|w/],.

37



Linear vs. Ridge Regression

Analytical Comparison

Linear objective: %g (wTx® — y("))2 Ridge objective: % g (wTx® — y(’o))2 + %HWH%
iIn matrix-vector form: EHXW — yH% in matrix-vector form: EHXW — yH% + EHWH%
Gradient: VL(w) = X' (Xw — y) Gradient: VL(w) = X' (Xw —y) + Aw
Closed-form solution: Closed-form solution:
w=X"X)"1XTyif Xis full rank. w=X'X+)"'X"y

(X'X + Al is always invertible)

38



Ridge Regression

Constrained and Penalized ERM

The (penalized form) ridge regression solution with regularization parameter 4 > O is

1 . ,
W E drg min — Z (wa(l) — y(l))2 4 /IHWH%
weRd T i—1

where ||w]|? = W12 + ...+ WC% is the squared &,-norm.

The (constrained form) ridge regression solution with regularization parameter > > 0 is

] « . .
W € arg min — Z (w T x@ — y0)2
Iwli3<r? 52,

39



Linear vs. Ridge

Regularization Path Comparison

Ridge Regression

| . | o funding
W, € arg min — Z (w ' Tx® — yW)2 .
Iwlis<r® Ty
. 1 < . . 0 — 28ﬁ65%4
W € arg min — Z (w'xW — y0)2
WERd n i=1
. . o — college
For r =0, ||W.||,/[|W]|, = O.
Forr = oQ, HW,,HZ/HWHZ = 1. o _
hs

00 02 04 06 08 1.0
”erQ/ w 2

Modified from Hastie, Tibshirani, and Wainwright's Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.
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Lasso Regression
Constrained and Penalized ERM

The (penalized form) lasso regression solution with regularization parameter 4 > 0O is

W € arg min — Z (w Tx(® — y(’))2 + Allwll;

WERd i=1

where |[w]|; = |w1| + ...+ |wd| is the £-norm.

The (constrained form) lasso regression solution with regularization parameter r > 0 is

w € arg min — Z (wTx® — y)2

Iwll;<r i=1

42



Linear vs. Ridge

Regularization Path Comparison

Lasso
. ' — | funding
W, € arg min _Z(W Tx = y)° T
[wll<r i=1
o — 88ﬁe58e4
W € arg min — Z (w ' x® — y)?
weR? i=1
o _ — | college
Forr =20, |[w,|[,/|lw]l; = 0.
For r = oo, [|W, Il /W]l = 1. 7 .

00 02 04 06 08 1.0

|, ||1/]|w]]1

Modified from Hastie, Tibshirani, and Wainwright's Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.



Lasso vs. Ridge

Reqgularization Path Comparison

Ridge Regression Lasso
o _ funding o _ E — | funding
0 — 28ﬁ65%4 0 — 38ﬁ658e4
o — college o T4 — | college
un _ 0 _
| | 2 :
hs : : hs
[ I l | I I | | | | | |
00 02 04 06 0.8 1.0 0.0 02 04 06 08 1.0
[ [l2/ || w1 /]|w]l1




Lasso Regression

Pros and Cons

Pros:
Output weights are sparse which can mean a more interpretable model.
More intuitive reduction in model complexity.
Cons:
No closed form solution because ||[w||; is not difterentiable (unlike ridge regression).

Can solve Lasso with iterative methods, but generally not as quickly as ridge regression.
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Lasso Regression
Benefits of Sparsity

A sparse solution w is one in which many entries are 0. Why is this useful?
Faster to compute features; cheaper to measure or annotate them.
Less memory to store features (deployment on mobile device).

Interpretability: identifies the important features.

Prediction function may generalize better (model is less complex, i.e. Z is “smaller”).

47



Parameter Space

Intuition

To visualize, suppose & = R?.

A 1 ¢ . . : ¢
— T.,.(1 1)\2 -
R,(w) == ) (wx® -y ; s
n- :
=1 : S
Geometrically, f o
w'x = w,x; + wox, is a plane through .
the origin in R”. f T .
. , O . :

ﬁn(w) : R? > R is a loss surface in R?
for every possible plane.



https://samuel-deng.github.io/assets/1003/lec3_regplane.html
https://samuel-deng.github.io/assets/1003/lec3_regplane.html

Parameter Space

Intuition

To visualize, suppose & = R?.

A 1 L . . : *
T 2 :
R,w)=—=2) (wx® -y S
n?- :
=1 . P 20
Geometrically, f .
w'x = wyx; + wox, is a plane through ° 0
the origin in R”. »
R (w): R? = Ris a loss surface in R’ : . 3
for every possible plane. :



https://samuel-deng.github.io/assets/1003/lec3_regobjective.html
https://samuel-deng.github.io/assets/1003/lec3_regobjective.html

Parameter Space

Intuition

To visualize, suppose & = R?.

A [ -
R,(w) == ) (wTx®—yOy
" =1

Geometrically,

w'x = w;x; + wox, is a plane through S

the origin in R”.

ﬁn(w) : R? > R is a loss surface in R?
for every possible plane. w1




¢ and ¢, Constraints

Intuition

For visualization, restrict to:
H = {h(x) = w;x; + wHox, |

Represent Z by {(w;, w,) € R*}.

Where are the sparse solutions?
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¢ and ¢, Constraints

Intuition

For visualization, restrict to:
H = {h(x) = wix; + wyox, |

Represent Z by {(w;, w,) € R*}.

Where are the sparse solutions?
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Empirical Risk in R?

Visualization for Square Loss

In matrix form: IAQn(W) = —||Xw — y||*
n

Minimizer: w = (X' X)~1X Ty
For any w € RY, by “completing square”:

. 1 .
R (w)=—w-w)'X"X)(w—-W)+R (W)
n

The w such that IAin(w) exceeds I/én(\//\\/) by ¢ > 0 are ellipsoids centered at w:

fw: Row) =+ R,(9) | = {w: (w =) XTX(w = W) = nc}



Empirical Risk in R?

Visualization for Square Loss

The w such that I%n(w) exceeds IAQn(vAv) by
¢ > 0 are ellipsoids centered at w:

{w R (w)=c+ kn(ﬁ;)}

= {w (W =)' X" X(w—W) = nc}

w2




1 Regularization

Visualization

200

1 © . .
W, € arg min — Z (w T x@ — y0)2
WERZ n i=1

—_—

60

120

subject to: |w1| + |w2| <r

w2




1 Regularization

Visualization

1 < . .
W, € arg min — Z (w T x@ — y0)2

WERZ n i1 é 20
. A50
subject to: |w1| + |w2| <r
5
%

w2 w1


https://samuel-deng.github.io/assets/1003/lec3_regl1.html
https://samuel-deng.github.io/assets/1003/lec3_regl1.html

¢ > Regularization

Visualization

200

1 © . .
W, € arg min — Z (w T x@ — y0)2
WERZ n i=1

—_—

60

subject to: W12 + wz2 <r

120

w2




¢ > Regularization

Visualization

1 < . .
W, € arg min — Z (w T x@ — y0)2

) : 2
weR i=1 :

subject to: w12 + w22 <r


https://samuel-deng.github.io/assets/1003/lec3_regl2.html
https://samuel-deng.github.io/assets/1003/lec3_regl2.html

Sparsity

Geometric Intuition

Suppose X'X = I (orthogonal features).

Then, contours are pertfect circles.

The win red regions are closest to
corners in the £ ball.

Geometric intuition: Projection onto

diamond (¢, ball) encourages solutions at
corners.




Sparsity

Geometric Intuition

Suppose X'X = I (orthogonal features).

Then, contours are pertfect circles.

Geometric intuition: Projection onto
sphere (£, ball) encourages solutions

equally.




¢, Regularization L

Geometric Intuition

Generalize to fq:

q q q="1 q=1/2
(Uwll)? = [wi |+ |w,|

Note: ||wl|, is only a norm for g > 1 but
not for g € (0,1).

When g < 1, the £, constraint is non-
convex (so hard to optimize).

O
|
(@)

£y detined as number of non-zero
weights, i.e. subset selection.




Other Forms of Reqgularization
Implicit Regularization, Weight Decay, etc.

In general, regularization is a term that describes
ways to “bias” a problem with infinitely many
solutions to a smaller subset of solutions.

Implicit regularization. Properties of the
optimization algorithm lead to “"simple”
solutions.

Data augmentation. Randomly modity
training data in by an operation, usually used
in deep learning (e.g. randomly cropping
iImages).
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https://samuel-deng.github.io/assets/1003/lec2_nonconvex_surface_gd.html
https://samuel-deng.github.io/assets/1003/lec2_nonconvex_surface_gd.html
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Regression

Problem Instance

Input space: & = R?

Action space: &/ = R

Outcome space: ¥ = I

y is the predicted value (the action).

y is the observed value (the outcome).
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Distance Based Loss

Definition

In general, loss functions take the form:

V. y) = 2(,y) €R

Va\

Regression losses typically depend on the residual r =y — .

A loss function is distance-based if:

1. It only depends on the residual: £(y,y) = w(y — y) forsomey : R - R

2. It is zero when the residual is zero: y(0) = 0.
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Loss Functions

Examples
=y Y y y=3 (v — )
Square (£,) loss: £(r) = r*. 1 , 1 1
Absolute (Z,) loss: £(r) = | r|. 5 -------------------------------------- O -------------------------------------------------- 5 ----------------------------------------------- : 5 .......................
0 | o | o | oo
Outliers typically have large residuals. | 50 """"""""""""""""""""""""" 050 2500 ------------------

Square loss more affected by outliers
than absolute loss.
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Loss Functions

Examples

r=y-y

Square (£,) loss: £(r) = .

Absolute loss: Z(r) = |r].
Outliers typically have large residuals.

Square loss more aftected by outliers
than absolute loss.
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Loss Functions

Robustness

r=y-—y

Square (£,) loss: £(r) = .

Absolute loss: £(r) = |r|.

Robustness refers to how affected a
learning algorithm is by outliers.
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Loss Functions

Robustness

Square loss: £(r) = r?

(not robust)

Absolute loss: Z(r) = ||

(not differentiable)

Huber loss: Quadratic for |r| < 6§ and
inear for |r| > 0

(robust and differentiable)
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Classification

Problem Instance

Input space: & = R?
Action space: &/ = {—1,1}
Outcome space: & = {—1,1}

We've already seen the zero-one lossforf: & — {—1,1}:

C(f(x),y) = 1{f(x) # y}

But let's allow real-valued predictions f : & — R.

/1



Classification

Geometric Picture

Input space: & = R?
Action space: &/ = {—1,1}

Outcome space: & = {—1,1}

Geometrically: find a decision boundary
between the classes.

X2
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Classification

Geometric Picture

12 -

Input space: & = R? 10 -

Action space: &/ = {—1,1}

X2

Outcome space: & = {—1,1}

We will focus on methods that induce
linear decision boundaries.




Classification

Geometric Picture

Input space: & = R?
Action space: &/ = {—1,1}
Outcome space: & = {—1,1}

We will focus on methods that induce
linear decision boundaries.

Most problems are not linearly separable
(i.e. there exists a hyperplane separating

they=—1andy =1 points).




Classification

Problem Instance

Input space: & = R?
Action space: &/ = R
Outcome space: & = {—1,1}
But let’s allow real-valued predictions f: & — R.
f(x) >0 = Predict 1

f(x) < 0 = Predict —1
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Classification

Problem Instance

Input space: & = R?
Action space: &/ = R
Outcome space: & = {—1,1}

For a linear function f(x) = w 'x:

w'x>0 = Predict 1

w'x <0 = Predict —1
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Classification

Score Function

Outcome space: ¥ = {—1,1} Action space: &/ = R

For a real-valued prediction function f: & — R, the value f(x) is called the score for input x.

In this context, we can call fa score function.

he magnitude of the score can be interpreted as confidence in our prediction.
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Margin

Definition

The margin for a predicted score y and the true classy € {—1,1} is yy.

With a score function f : Z — R, the margin is yf(x).
It y and y are the same sign, prediction is correct and margin is positive.
It y and y have ditterent sign, prediction is incorrect and margin is negative.

We want to find fthat maximizes the margin.

Many classification losses only depend on the margin (margin-based losses).
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Classification Losses

Zero-One Loss

1 ifflx) >0

h(x) = sign(f(x)) := {_1 f f(x) < 0

The zero-onelossforh : & — {—1,1}is€(h(x),y) = 1{h(x) # y}.

We can rewrite this in terms of the margin and score function as

C(f(x),y) == 1{yf(x) < 0}.

The empirical risk for zero-one loss, given dataset D, :
A 1 « .
R,(f)==) 1{yPfx®) <0
=l
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Classification Losses

Zero-One Loss

The empirical risk for zero-one loss, given dataset D, :

A ] & o
_ 2 (i) £ ()
R, (f) . igfl{y f(x) <0}

Non-convex, non-differentiable, and discontinuous.

Optimization problem is NP-hard (computationally infeasible).
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Classification Losses

Zero-One Loss

Margin: m = yy

Zero-one loss: £,_(m) :=1{m < 0}

X-axIs Is margin:

m > (0 < classification is correct.
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Classification Losses

Hinge Loss

Margin: m = yy

Hinge loss: £};p..(m) := max(l — m,0)

Hinge loss is convex, upper bound on
zero-one loss.

Not differentiable atm = 1.
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Hinge Loss
(Soft-Margin) Support Vector Machine

Hypothesis class: # = {h,(x) = w'x: w € RY)}

Loss: Zhinee(m) = max(l —m,0) (hinge loss)

Regularizer: £,

Empirical risk minimization:

| . .
min — Z max(1 — y®@h, (x),0) + A||w]|3
weR? n 1
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Classification Losses

Perceptron Loss

Margin: m = yy

Perceptron loss: (m) := max(—m,0)

4 perc

Hinge loss, with "hinge at zero."

Not an upper bound on zero-one loss,
out It Is convex.
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Perceptron Loss
Perceptron Algorithm

Hypothesis class: # = {h,(x) = w'x:w € RY)}

"SGD” on the perceptron loss (m) = max(—m,0) (perceptron loss) is equivalent to:

fperc

Initialize w < 0.
While there exists (x1”, y¥) that is misclassified:
For (x,y") e D, :
f yOuw Tx® < 0 (wrong prediction):

Update w <« w + yWx®.
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Classification Losses

Logistic Loss

Margin: m = yy

Logistic/Log loss: £},,(m) := log(1 +e™™)

Logistic loss is differentiable.

Always rewards more margin (loss never 0).
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Logistic Loss

Logistic Regression

Suppose we want some & : R — [0,1] (to
be interpreted as probability of —1 or 1).

he sigmoid function ¢ : R — [0,1]:

P) = 1 + exp(—2)
Usetul property:
I = ¢(2) = ¢p(=2).

—0.2
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Logistic Loss

Logistic Regression

(S I

Compose sigmoid with linear functions:

S‘fwsig = {x — dp(w'x) : w € RY)
fw'x >0, p(w'x)is closeto 1.

fw'x <0, p(w'x)is close to 0.

f w'x =0, p(w'x)is close to 1/2.
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Logistic Loss

Logistic Regression

|
P(2) = L+ exp(—2) and hypothesis class g'sig = {x— p(w'x) : w € RY)

What's a reasonable loss function?

fy =1, we want ¢p(w ' x) large (probability of predicting 1).

fy = —1, we want ¢p(w ' x) small (probability of predicting —1) = 1 — ¢p(w 'x) large.
Important property of sigmoid: 1 — ¢(z) = ¢p(—2).

fy=—1 wewantl —¢pw'x) = ¢d(—w'x) large.
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Logistic Loss

Logistic Regression

What's a reasonable loss function?
fy = 1, we want ¢(w ' x) large (probability of predicting 1).
fy = — 1, we want ¢(—w 'x) large (probability of predicting —1).

Summary. Fory € {—1,1}, we want ¢p(yw ' x) large = Smaller loss for larger p(yw 'x).

—log(¢p(yw 'x)) = — log ( ) = log(1 + exp(—yw 'x))

1 + exp(—ywTx)

20



Classification Losses

Logistic Loss

Margin: m = yy

Logistic/Log loss: £},,(m) := log(1 +e™™)

Logistic loss is differentiable.

Always rewards more margin (loss never 0).
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Logistic Loss

Logistic Regression

Hypothesis class: # = {h,(x) = w'x: w € RY)}

Loss: flog(m) = log(1 + ™) (logistic loss)

Empirical risk minimization:

1 & . .
min — Z log(1 + exp(—y(l)WTX(l)))
weR? n 1

Minimizing this objective is known as logistic regression (a linear classification method).
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Square Loss

Square loss for classification?

Recall the square loss: Z(f(x),y) = (f(x) — y)°.

Fory € {—1,1}, we have y* = 1, so we can write this in terms of the margin:

£(f(x), ) = (f(x) = y)* = )y = 2f)y + 1 = (1 = flx)y)* = (1 — m)*
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Classification Losses

Square Loss

Margin: m = yy

Square loss: (m) := (1 — m)?

square

Convex and differentiable.

Heavily penalizes outliers (e.g. mislabeled
examples).
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- " 4.0
Classification Losses ook
- Hinge
CO nveXity 3.5 — Log
—— Squared
3.0
All of these losses have a property in
common: convexity. 2.5 -
fhinge(m) L= maX(l — m,O) 2:0°
1.5 7

£ perc(m) 1= max(—m,0)

£10(m) = log(1 + ¢™™) o ‘\

fsquare(m) = (1 - m)2 o L\‘

0.0

-2.0 -1.5 -1.0 —0.5 0.0 0.5 1.0 1.5 2.0
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