
Problem Set 1: Statistical Learning Framework & Regression

Due: Tuesday, February 3, 2026 at 11:59pm ET

Instructions: Your answers to the questions below, including plots and mathematical work,
should be submitted as a single PDF file. It’s preferred that you write your answers using
software that typesets mathematics (e.g. LATEX or MathJax in iPython), though if you need to
you may scan handwritten work. You may find the minted package convenient for including
source code in your LATEX document. For the coding problems, the text Submission:
indicates all you need to submit in your PDF submission.

Problem 1: Squared Risk (15 Points)

First, we will show that if you want to try to predict the value of a random variable, the best
you can do (for minimizing expected square loss) is to predict the mean of the distribution.
Your expected loss for predicting the mean will be the variance of the distribution.

Problem 1(a) (5 points)

Let y be a random variable with a known distribution, and consider the squared loss
function ℓ(a, y) = (a − y)2. We want to find the action a∗ that has minimal risk. That
is, we want to find a∗ = argmina E[(a− y)2], where the expectation is with respect to y.
Show that a∗ = E[y] and the Bayes risk (i.e., the risk of a∗) is Var(y).

Now we will introduce an input. Recall that the expected loss or risk of a hypothesis/decision
function f : X → A is

R(f) = E [ℓ(f(x), y)] ,

where (x, y) ∼ PX×Y and the Bayes hypothesis/decision function f ∗ : X → A is a function
that achieves the minimal risk among all possible functions:

R(f ∗) = inf
f
R(f).

Here we consider the regression setting, in which A = Y = R. We will show that for the
squared loss ℓ(a, y) = (a − y)2, the Bayes decision function is f ∗(x) = E[y | x], where the
expectation is over y. As before, assume we know the data-generating distribution PX×Y .

We’ll approach this problem by finding the optimal action for any given x. If somebody tells
us x, we know that the corresponding y is coming from the conditional distribution PY|X .

DS-GA 1003 (Problem Set 1) Page 1

https://github.com/gpoore/minted


Problem 1(b) (5 points)

For a particular x, what value should we predict (i.e. what action a should we produce)
that has minimal expected loss? Express your answer as a decision function f(x), which
gives the best action for any given x. Formally, we are looking for

f ∗(x) = argmin
a

E
[
(a− y)2 | x

]
,

where the expectation is with respect to y. (Hint: You may find the previous question
helpful. There is nothing to write except the function f(x), but make sure you understand
what is going on with your answer).

In the Problem 1(b), we produced a decision function f ∗(x) that minimized the risk for each
x. In other words, for any other decision function f(x), f ∗(x) is going to be at least as good
as f(x) for every single x, as measured by expected squared loss.

Problem 1(c) (5 points)

To show that f ∗(x) is the Bayes decision function, we need to show that

E
[
(f ∗(x)− y)2

]
≤ E

[
(f(x)− y)2

]
for any f . Prove that this is true. (Hint: Use Problem 1(b) and law of iterated expecta-
tion)

DS-GA 1003 (Problem Set 1) Page 2



Problem 2: Risk Decomposition (30 Points)

For the remaining problems, we will consider a synthetic prediction problem to develop our
intuition about risk decomposition. The input space is X = [0, 1] and the outcome space
is Y = R. Consider the following distribution PX×Y . The marginal distribution PX is the
uniform distribution over the unit interval, Unif[0, 1] (i.e. x ∼ Unif[0, 1]). Each y ∈ Y = R
is defined as a degree-2 polynomial of x. That is, there exists (a0, a1, a2) ∈ R3 such that

y = p(x) = a0 + a1x+ a2x
2.

In this problem, our action space is the outcome space, so A = Y = R. We aim to find a
hypothesis h : X → R to predict the outcomes in Y = R; let ŷ = h(x) be the predicted
outputs. Let Hd be the set of polynomial functions on R of degree d:

Hd =
{
x 7→ w0 + w1x+ · · ·+ wdx

d : wi ∈ R for 0 ≤ i ≤ d
}
.

We will consider hypothesis classes Hd with varying values of d. We will minimize the
squared loss ℓ(ŷ, y) = (ŷ − y)2.

Problem 2(a) (5 points)

Recall the definition R(f) of a predictor f . While this cannot be computed in general,
note that we know PX×Y exactly in this problem. With this knowledge, state which
function f ∗ : X → Y is the obvious Bayes predictor and justify why R(f ∗) is minimum
at f ∗.

Problem 2(b) (5 points)

Using H2 as your hypothesis class, which function f ∗
H2

is the risk minimizer in H2? What
is the approximation error achieved by f ∗

H2
?

Problem 2(c) (5 points)

Consider now Hd with d > 2. For any statistical learning problem (not just the one
described above) what inequality direction (i.e. ≥ or ≤) should fill in

R(f ∗
H2
) □ R(f ∗

Hd
)?

Make sure you justify your decision. For this problem, which function f ∗
Hd

is a risk
minimizer in Hd? What is the approximation error achieved by f ∗

Hd
?

DS-GA 1003 (Problem Set 1) Page 3



Problem 2(d) (10 points)

For this question, assume a0 = 0. Now, consider the hypothesis class

H = {x 7→ w1x : w1 ∈ R} .

Which function f ∗
H is a risk minimizer in H? What is the approximation error achieved

by f ∗
H? Suppose, further, that a2 = 0 as well. Then, what is the approximation error of

f ∗
H?

Problem 2(e) (5 points)

In the previous questions, we assumed that the conditional distribution y | x was com-
pletely determined by the function p(x) = a0+ a1x+ a2x

2. In some real-world scenarios,
however, there may be some random noise in the relationship between y and x. Now,
suppose that

y = p(x) + ϵ = a0 + a1x+ a2x
2 + ϵ,

where ϵ ∼ N (0, 1) is distributed as an independent standard Gaussian random variable.
In this case, what is the marginal distribution PX and what is the conditional distribution
PY|X ? State (and justify) which function f ∗ : X → Y is the Bayes predictor and state
the Bayes risk R(f ∗) (Hint: Problem 1 may be helpful).

DS-GA 1003 (Problem Set 1) Page 4



Problem 3: Polynomial Regression & Least Squares (25

Points)

This problem is a continuation of the setup of Problem 2. In practice, PX×Y is usually
unknown and we use the empirical risk minimizer (ERM). We will reformulate the setup in
Problem 2 as a d-dimensional linear regression problem. First, note that functions in Hd are
parameterized by a vector

w = (w0, w1, . . . , wd) ∈ Rd+1.

We will use the notation fw : X → R to denote the hypothesis fw parameterized by w. Sim-
ilarly, we use pa : X → R to denote the true polynomial parameterized by a = (a0, a1, a2) ∈
R3. We can assume that we are back in the zero noise setting for the conditional distribution
PY|X , where

y = pa(x) = a0 + a1x+ a2x
2.

As is typical in the statistical learning framework, we receive a sample (x(1), y(1)), . . . , (x(n), y(n))
drawn i.i.d. from PX×Y . In this problem, our goal will be to show that polynomial regression
reduces to performing linear least squares regression on a transformed dataset.

As stated above, our samples (x(i), y(i)) are pairs of real numbers, x(i) ∈ X = [0, 1] and
y(i) ∈ R. We can imagine transforming each one-dimensional x(i) into a d + 1 dimensional
feature vector

x(i) =
(
1 x(i) (x(i))2 . . . (x(i))d

)
∈ Rd+1

and stacking these feature vectors row-by-row into a matrix X ∈ Rn×(d+1). We can also
arrange all the y(1), . . . , y(n) into a vector in Rn as well. This results in the following matrix
and vector:

X =


1 x(1) . . . (x(1))d

1 x(2) . . . (x(2))d

...
...

...
...

1 x(n) . . . (x(n))d

 y =


y(1)

y(2)

...
y(n)

 (1)

We refer to X ∈ Rn×(d+1) as the design matrix or input matrix and y ∈ Rn as the label vector.
Writing these objects this way allows us to take advantage of the tools of linear algebra to
solve the empirical risk minimization problem.

DS-GA 1003 (Problem Set 1) Page 5



Problem 3(a) (10 points)

Recall the definition of empirical risk minimization from class. Show that solving the
minimization problem with the above design matrix and label vector

ŵ ∈ argmin
w∈Rd+1

∥Xw − y∥22

yields an empirical risk minimizer fŵ ∈ Hd+1 for squared loss ℓ(ŷ, y) = (ŷ − y)2 on the
dataset (x(1), y(1)), . . . , (x(n), y(n)).

Problem 3(b) (5 points)

Prove the following useful lemma from linear algebra: for any real matrix X, rank(X) =
rank(X⊤X).

One way to solve the following problem is via standard optimization and multivariable cal-
culus. You may find the following identities from matrix calculus useful:

• For a fixed symmetric A ∈ Rd×d, ∇vv
⊤Av = 2Av.

• For a fixed symmetric A ∈ Rd×d, ∇2
vv

⊤Av = 2A.

• For a fixed vector a ∈ Rd, ∇va
⊤v = a.

Above, ∇v denotes the gradient with respect to v and ∇2
v denotes the Hessian with respect

to v. You may also freely use the following fact: if F : Rd → R is twice-differentiable and
has a positive semidefinite Hessian ∇2

vF (v) ∈ Rd×d, then any critical point (i.e., v where
∇vF (v) = 0) of F is a global minimizer.

Problem 3(c) (10 points)

Using the Lemma in 3(b), show that if n > d and X is full rank, the solution to the
minimization problem in (1)

ŵ ∈ argmin
w∈Rd+1

∥Xw − y∥22

is given by ŵ = (X⊤X)−1X⊤y. (Hint: solve the optimization problem by taking gradients
with respect to w).
Update (01/28): A previous version of this problem had a reminder to divide by n but
that is not necessary to the problem, so we have removed it.

In general, the empirical risk minimization problem for least squares regression with a linear

DS-GA 1003 (Problem Set 1) Page 6



hypothesis class can be solved as in Question 4 above. That is, if we want to find

w ∈ argmin
w∈Rd

n∑
i=1

(
w⊤x(i) − y(i)

)2
for x(i) ∈ Rd, we can construct a design matrix X ∈ Rn×d and outcome vector y ∈ Rn

X =


← x(1) →
← x(2) →

...
← x(n) →

 y =

y
(1)

...
y(n)


and solve the linear algebraic formulation:

w ∈ argmin
w∈Rd

∥Xw − y∥2.

As Question 4 shows, the closed-form solution is w = (X⊤X)−1X⊤y. For polynomial re-

gression, we encoded each x(i) into a d+ 1-dimensional vector of features x(i) to convert our
originally nonlinear problem of solving for a polynomial into a linear problem where we only
needed to solve for the coefficients of the polynomial.

DS-GA 1003 (Problem Set 1) Page 7



Problem 4: Polynomial Regression Implementation (30

Points)

We now continue this polynomial regression exploration with a hands-on coding problem.
Open the source code file ps1 skeleton.py from the ps1-regression.zip folder.

Problem 4(a) (5 points)

Write a function called least squares estimator taking as input a design matrix X ∈
Rn×(d+1) and a corresponding vector of labels y ∈ Rn, returning ŵ ∈ Rd+1. Your function
should handle any value of n and d and it should return an error if n ≤ d. You can assume
that the input design matrix X is full rank, as drawing the x at random from the uniform
distribution makes it almost certain that any design matrix X is full rank.
Submission: Include the code you write in the your submission.

Problem 4(b) (3 points)

Recall the definition of empirical risk R̂n(h) of some hypothesis h for a sample
(x(1), y(1)), . . . , (x(n), y(n)). Write a function empirical risk that takes as input a design
matrix X ∈ Rn×(d+1), a vector y ∈ Rn, and a w ∈ Rd+1 and outputs the empirical risk
of the hypothesis fw parameterized by w (see Problem 3). In this problem, be sure to
divide by n.
Submission: Include the code you write in your submission.

Problem 4(c) (5 points)

Using the function get a with d = 5, get a value for a and draw x train, y train of
size n = 10. Use the code you wrote to estimate ŵ from x train and y train. Compare
ŵ and a. Make a plot (Plot 1) with x on the x-axis and y on the y-axis, displaying the
points in your training set and the true underlying function p(x) in [0, 1]. Make a second
plot (Plot 2) with x on the x-axis and y on the y-axis, displaying the points in your
training set and your estimated function fŵ(x) in [0, 1]. You should use np.linspace

from NumPy to ensure that p(x) and fŵ(x) are sufficiently smooth.
Submission: Submit Plot 1 and Plot 2 (no code). Update (01/25): A previous version
of this problem mentioned drawing a test set, but there was nothing to do with that test
set. We have removed that text from the problem.

DS-GA 1003 (Problem Set 1) Page 8



Probelm 4(d) (2 points)

Now, adjust the degree d for the design matrix (while keeping the d = 5 for the true
function). Theoretically, what values of d can we get a “perfect fit?” How does this
result relate to the conclusions you made about approximation error above?
While there is a range of values of d that should get a “perfect fit” theoretically (just by
understanding what class of functions you are fitting), you may not be seeing the same
thing in your code. Why might that be the case (any conjecture here is worth points)?
Submission: Submit a written answer to these questions (no code).

Now we will modify the true underlying PX×Y by adding some noise. In particular, the
draw sample with noise function generates

y = p(x) + ϵ

where ϵ ∼ N (0, 1) is distributed as a standard Gaussian random variable.

Problem 4(e) (6 points)

Now using draw sample with noise to draw samples, plot the empirical risk of fŵ on
the training set that ŵ was obtained from as a function of n for d < n < 150 for d = 2
(Plot 3). On the same plot, plot the empirical risk of fŵ on an independent test set
of size ntest = 1000 using a separate call to draw sample with noise (with the same
underlying a ∈ Rd for each d) for each of the same values. The x-axis of this plot should
be n, and the y-axis should be the values for risk. You should use a logarithmic scale for
the plot’s y-axis. Repeat this for d = 5 and d = 10 (Plots 4 and 5). There should be a
total of 3 different plots (Plot 3, Plot 4, Plot 5) for d = 2, d = 5, and d = 10, each with
two curves.
Submission: Submit Plots 3, 4, 5 (no code). Update (01/25): Added guidance on
drawing an independent test set in this problem for clarity.

Problem 4(f) (9 points)

Using draw sample with noise for the values n = 15, n = 30, and n = 100 for each of
d = 2, d = 5, and d = 10, fit fŵ on these training points. Make a single plot for each
of these pairs of (n, d) of the training points, the underlying true function p(x) in [0, 1],
and the estimated function fŵ in [0, 1]. There should be a total of 9 plots (Plots 6 - 14).
You should use np.linspace from NumPy to ensure that p(x) and fŵ(x) are sufficiently
smooth. Comment on the effect of increasing n. Comment on the effect of increasing d.
Submission: Comment on n and d and Plots 6 - 14 (no code).

DS-GA 1003 (Problem Set 1) Page 9


