
Problem Set 2: Gradient Descent & Regularization

Due: Tuesday, February 17, 2026 at 11:59pm ET

Instructions: Your answers to the questions below, including plots and mathematical work,
should be submitted as a single PDF file. It’s preferred that you write your answers using
software that typesets mathematics (e.g. LATEX or MathJax in iPython), though if you need to
you may scan handwritten work. You may find the minted package convenient for including
source code in your LATEX document. For the coding problems, the text Submission:
indicates all you need to submit in your PDF submission.

Problem 1: Descent Lemma (15 Points)

In this problem, we will derive the descent lemma. Recall from Lecture 2 the formal statement
of the descent lemma: if F : Rd → R is continuously twice-differentiable and L-smooth for
any w ∈ Rd, then for 0 < η ≤ 1/L,

F (w − η∇F (w)) ≤ F (w)− η

2
∥∇F (w)∥2.

Recall that an L-smooth function is one whose derivatives do not change too much:

∥∇F (x)−∇F (y)∥ ≤ ∥x− y∥ ∀x, y ∈ Rd.

Of course, the second derivative (the Hessian, for multivariate scalar-valued functions), is
just the change in the first derivative. So L-smoothness should relate to a function’s second
derivatives.

For twice differentiable functions, L-smoothness is equivalent to a bound on the eigenvalues
of its Hessian. If λmax(·) is the operator that takes the maximum eigenvalue of a matrix,
then L-smoothness is just equivalent to

λmax(∇2F (x)) ≤ L ∀x ∈ Rd,

where ∇2F (x) ∈ Rd×d is the Hessian of F and L > 0. We won’t prove this equivalence, but
you can take it on faith.

In words, the descent lemma says that, as long as F is “doesn’t change too wildly,” (smooth)
gradient descent is guaranteed to decrease the objective value by at least η

2
∥∇F (w)∥2.

Recall from the “rough derivation” presented in lecture that we first used the definition of
the derivative to get a first-order approximation. For a function F : Rd → R we saw that,
for any point w ∈ Rd,

F (v) ≈ F (w) +∇F (w)⊤(v − w),

DS-GA 1003 (Problem Set 2) Page 1

https://github.com/gpoore/minted


as long as v is close to w. If we pick a direction δ ∈ Rd to move from w and consider what
happens at v = w + δ, we get

F (w + δ) ≈ F (w) +∇F (w)⊤δ,

if δ is small (because then v would be close to w).

This wasn’t a formal statement, but Taylor’s Theorem from multivariable calculus makes
this formal. It states that, for any w, δ ∈ Rd, there exists a w̃ ∈ Rd on the line segment
between w and w + δ such that

F (w + δ) = F (w) +∇F (w)⊤δ +
1

2
δ⊤∇2F (w̃)δ.

Notice that the ≈ symbol is now replaced with how much the approximation is actually off
by:

1

2
δ⊤∇2F (w̃)δ.

Functions of the form
g(v) = v⊤Av,

are called quadratic forms and they are the multivariate equivalent of the leading quadratic
term in a quadratic function (i.e. ax2 in ax2 + bx + c). A very useful fact about quadratic
forms is that

max
v∈Rd:∥v∥=1

v⊤Av = λmax(A).

In words, maximizing v⊤Av over the unit vector directions gives the largest eigenvalue of A.

Problem 1(a) (5 points)

Suppose that F is L-smooth. Using the above fact about quadratic forms and Taylor’s
Theorem, prove that, for any w, δ ∈ Rd, we have

F (w + δ) ≤ F (w) +∇F (w)⊤δ +
L

2
∥δ∥2.

Hint: It may help to use this trick: for any vector v ∈ Rd, we can always write it as
(v/∥v∥) · ∥v∥, so v/∥v∥ is a unit vector.

From Problem 1(b), we have that

F (w + δ) ≤ F (w) +∇F (w)⊤δ +
L

2
∥δ∥2.

This says that F (w + δ) is no larger than the quadratic function G : Rd → R of δ,

G(δ) :=
L

2
∥δ∥2 +∇F (w)⊤δ + F (w).

DS-GA 1003 (Problem Set 2) Page 2



Compare this to a single-variable quadratic function,

ax2 + bx+ c.

Problem 1(b) (5 points)

Prove that the minimizer of G(δ) is the vector

δ∗ = − 1

L
∇F (w)

using calculus. You may find the matrix calculus identities you used in Problem Set 1
useful. State how this δ∗ relates to the definition of gradient descent.

In Problem 1(b), you found the value of δ∗ that makes the right-hand side in the upper
bound

F (w + δ) ≤ F (w) +∇F (w)⊤δ +
L

2
∥δ∥2

the smallest. In words, this is the direction δ from w that, when taken, gives the sharpest
guarantee on how much F (w+ δ) decreases from F (w). We can use this to finalize our proof
of the descent lemma.

Problem 1(c) (5 points)

Finally, prove the descent lemma using your choice of δ∗ from Problem 1(b). That is,
prove that

F

(
w − 1

L
∇F (w)

)
≤ F (w)− 1

2L
∥∇F (w)∥2.

State why this proves the descent lemma.

DS-GA 1003 (Problem Set 2) Page 3



Problem 2: GD for Linear Regression (35 Points)

In this coding problem, we will be implementing (batch/full) gradient descent for the linear
regression problem. Although you will likely never have to do this from scratch again (most
major machine learning libraries will have this implemented for you), it’ll be instructive
to walk through how one might implement this from scratch so you understand the inner
workings of such libraries. The skeleton for all the functions mentioned in this problem can
be copied/pasted from the file ps2 skeleton.py.

Let’s recall the linear regression setup from lecture. In linear regression, the input space is
X = Rd, the output/label space is Y = R, and the action space is A = Y = R. We consider
the hypothesis class of linear functions:

H := {x 7→ w⊤x : w ∈ Rd}.

A hypothesis from this class looks like

hw(x) = w⊤x.

That is, to predict on a new x ∈ Rd, we simply take a dot product with w. We measured
how badly we did in the linear regression problem on a point (x, y) by the squared loss :

ℓ(hw(x), y) = (hw(x)− y)2 = (w⊤x− y)2.

Because each hypothesis in H corresponds to exactly one w ∈ Rd, we will ease up notation
and use w by itself to denote the hypothesis hw(x) = w⊤x.

At the end of the day, we care about the risk of a hypothesis from this class,

R(w) := E(x,y)∼PX×Y

[
(w⊤x− y)2

]
.

We don’t know PX×Y in a typical machine learning problem, but we have a dataset Dn :=
{(x(1), y(1)), . . . , (x(n), y(n))} that we assume is drawn i.i.d. from PX×Y . Our goal, then, is to
minimize the empirical risk :

R̂n(w) :=
1

n

n∑
i=1

(w⊤x(i) − y(i))2.

Recall from Problem Set 1 that you were able to write this as a design matrix X ∈ Rn×d

and output vector y ∈ Rn in equivalent matrix-vector form:

R̂n(w) =
1

n
∥Xw − y∥2.

Before running gradient descent or doing any machine learning, we will take a couple of
preliminary preprocessing steps on our data.

DS-GA 1003 (Problem Set 2) Page 4



Feature normalization. When feature values differ greatly, we can get much slower rates of
convergence for gradient-based algorithms. Furthermore, when we start using regularization
(in a later problem), features with larger values would be treated as “more important,” which
is not usually what you want. One common way to approach feature normalization is to
perform an affine transformation (i.e. a shift and rescale) on each feature so that all feature
values in the training set are in [0, 1]. Each feature gets its own transformation, depending
on the scale of that feature.

When using our hypothesis on a validation or test set, we will apply the same transformation
we did on the training set to the new points in validation or test. It is important that the
transformation you use is “learned” on the training set and then applied to the test/validation
set! It is possible that some transformed values will lie outside of [0, 1].

Problem 2(a) (3 points)

Find the function feature normalization in the skeleton code and implement the func-
tion described in the specification. Your function should take train and test, which
are two 2D numpy arrays of size (num instances, num features) (in our mathemat-
ical notation, n × d). It should output the normalized arrays train normalized and
test normalized. Note that features that are constant cannot be normalized in this
way – your function should discard features that are constant in the training set.
Hint: Using numpy’s built-in “broadcasting” feature may be helpful here for writing sim-
pler code.
Submission: Submit the Python code of your implemented function,
feature normalization.

Adding the intercept. In lecture, we saw that there is a trick to add a “bias” or intercept
term to the hypotheses we are choosing from that just requires adding one more feature from
the dataset. Recall that, as written above, the class of linear predictors are just functions of
the form:

hw(x) = w⊤x

but this only includes lines/planes/hyperplanes that go through the origin. Ideally, we would
like to choose from the space of affine functions (i.e. linear functions with an intercept):

hw(x) = w⊤x+ w0.

The standard way to achieve this is to add an extra dimension to each x ∈ Rd that is just the
constant 1. Then, we’ll actually be solving the problem where x,w ∈ Rd+1. In matrix-vector
form, this would mean that you would have a design matrix of dimensions X̃ ∈ Rn×(d+1) and
a weight vector w̃ ∈ Rd+1, while y ∈ Rn remains the same dimension.

When you start working with data.csv for this problem, don’t forget to apply this trick!

DS-GA 1003 (Problem Set 2) Page 5



Problem 2(b) (2 points)

Let x(1), . . . , x(n) ∈ Rd be the original training inputs for your problem and let y ∈ Rn

be the output vector. Prove that, by appending a 1 to each x(i) ∈ Rd to get

x̃(i) =
(
x
(i)
1 x

(i)
2 . . . x

(i)
d 1

)
∈ Rd+1

and appending w0 to w ∈ Rd to get w̃ ∈ Rd+1, the following are equivalent:

∥X̃w̃ − y∥2 =
n∑

i=1

(w⊤x(i) + w0 − y(i))2,

where X̃ ∈ Rn×(d+1) is the design matrix obtained from x(1), . . . , x(n) transformed to
x̃(1), . . . , x̃(n) in this way.

Now, we are ready to begin implementing and experimenting with gradient descent on this
problem. Recall that when we apply gradient descent to minimize a function, we call that
function our objective function, F : Rd → R. In our case, our objective function is the
empirical risk on the fixed dataset:

F (w) = R̂n(w) =
1

n
∥Xw − y∥2.

For this problem, we will be keeping the 1/n factor so we can make sure we are minimizing
the empirical risk itself (and not just the sum of losses).

First, we’ll write out exactly what gradient descent is for this objective function before
writing code. Note that our squared loss objective function is particularly easy to deal with
and we could write out its gradient (and Hessian) by hand by just applying the rules of
calculus. Later, when we perform gradient descent on neural networks, it’ll be much harder
to write down an expression in this way.

From lecture, we saw an approximate heuristic argument using the definition of the multi-
variate derivative for why the gradient descent update rule might be a good step direction
to take.

Problem 2(c) (2 points)

Consider a general differentiable objective function F : Rd → R (not necessarily the
squared loss empirical risk we are considering). Use the approximation argument from
lecture to show that stepping from w(t) to w(t+1) = w(t) + ηδ where η > 0 and δ ∈ Rd is
some vector follows the approximation:

F (w(t+1))− F (w(t)) ≈ η∇F (w(t))δ.

DS-GA 1003 (Problem Set 2) Page 6



From Problem Set 1, you should be familiar with how to take a derivative of the particular
objective function we are working with, and, thus, you can write down what gradient descent
looks like for our problem.

Problem 2(d) (3 points)

Write down the expression for the gradient descent update rule for our objective function:

F (w) =
1

n
∥Xw − y∥2.

You’ll need to take the gradient ∇wF (w) (you may use the hints from Problem Set 1 for
this problem). Don’t forget the 1/n factor!

We will now begin experimenting and writing code. The following two problems will calculate
your objective function itself and the gradient, which we already have written down by hand.

Problem 2(e) (2 points)

Modify the function compute square loss to compute our squared loss objective F (w)
for a given w ∈ Rd. It should take in X ∈ Rn×d, y, and w ∈ Rd and output a scalar
F (w) ∈ R. You may want to create a small dataset for which you can compute F (w) by
hand and verify that compute square loss outputs the correct value. You may use your
code from Problem Set 1; make sure you keep the 1/n factor and it outputs correctly!
Submission: Submit the Python code of your implemented function,
compute square loss.

Problem 2(f) (3 points)

Modify the function compute square loss gradient to compute our squared loss gra-
dient ∇wF (w) for a given w ∈ Rd. It should take in X ∈ Rn×d, y, and w ∈ Rd and
output a vector ∇wF (w) ∈ Rd. You may want to create a small dataset for which you
can compute ∇wF (w) by hand and verify that compute square loss gradient outputs
the correct value.
Submission: Submit the Python code of your implemented function,
compute square loss gradient.

For many optimization problems, coding the gradient up correctly can be tricky. Luckily,
there is a nice way to numerically check the gradient calculation. If F : Rd → R is differen-
tiable, then for any vector δ ∈ Rd, the directional derivative of F at w in the direction δ is

DS-GA 1003 (Problem Set 2) Page 7



given by1

lim
ϵ→0

F (w + ϵδ)− F (w − ϵδ)

2ϵ
.

We can approximate this directional derivative by choosing a small value of ϵ > 0 and evalu-
ating the quotient above. We can get an approximation to the gradient by approximating the
directional derivatives in each coordinate direction and putting them together into a vector.
In other words, take δ = (1, 0, 0, . . . , 0) to get the first component of the gradient. Then take
δ = (0, 1, 0, . . . , 0) to get the second component. And so on. See http://ufldl.stanford.
edu/wiki/index.php/Gradient_checking_and_advanced_optimization for details.

Problem 2(g) (5 points)

Complete the function grad checker according to the documentation given. It should
take as parameters X, y, w, a function that computes the objective function F (u) for any
u ∈ Rd (e.g. compute square loss) and a function that computes the gradient of the
objective function ∇F (u) for any u ∈ Rd (e.g. compute square loss gradient).
Note: Running the gradient checker takes extra time. In practice, once you’re convinced
your gradient calculator is correct, you should stop calling the checker so things run
faster.
Submission: Submit the Python code of your implemented function, grad checker.

At the end of the skeleton code, the data is loaded, split into a training and test set, and
normalized. Note that the skeleton code also does the “bias 1” trick for you, so, without loss
of generality, just assume that dimension d includes the extra intercept dimension. We’ll
now finish the job of running gradient descent on the training set. Later on, we’ll plot the
results against the SGD results.

Problem 2(h) (5 points)

Complete the function batch gradient descent to implement (full batch) gradient de-
scent for this problem. It should take in X ∈ Rn×d and y ∈ Rn, with optional param-
eters for the step size η > 0, the number of steps to stop at, and whether to use the
grad checker function from Problem 2(g). It should output two arrays: one is for the
history of the w values w(1), . . . , w(T ), and one is for the history of the objective values
F (w(1)), . . . , F (w(T )).
You should use the functions you implemented in the previous problems in this function.
If grad checker fails, stop the run of gradient descent and throw an exception of your
choice.
Submission: Submit the Python code of your implemented function,
batch gradient descent.

1Of course, it is also given by the more standard definition of directional derivative,
limϵ→0

1
ϵ [F (w + ϵδ)− F (w)]. The form given gives a better approximation to the derivative when we are

using small (but not infinitesimally small) ϵ.

DS-GA 1003 (Problem Set 2) Page 8

http://ufldl.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization
http://ufldl.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization


Problem 2(i) (5 points)

Now we will experiment with the step size η > 0. Note that if the step size is too large,
gradient descent may not converge. Starting with a step-size of 0.1, try the following six
step sizes:

η ∈ {0.5, 0.1, 0.05, 0.01, 0.005, 0.001}.

You can try more if you’re curious.
For each step size, plot the average square loss on the training data F (w) as a function
of the number of steps for each step size. Your plot should have a curve for each step
size that converges, with number of steps on the x-axis and F (w) on the y-axis. Do not
plot the curves for the step sizes that do not converge. Briefly summarize your findings.
Submission: Submit only your plot for this problem.

It turns out that our squared loss objective

F (w) =
1

n
∥Xw − y∥2

is a convenient one to find the smoothness parameter of. Recall the descent lemma from
lecture that you prove in Problem 1. This lemma tells you which step sizes are guaranteed
to make your objective function smaller for twice-differentiable functions. Thankfully, the F
we are dealing with is twice-differentiable and has a nicely interpretable second derivative.

Problem 2(j) (5 points)

Using the definition of L-smooth from lecture that applies to the Hessian of a function,
what is a bound on the smoothness parameter of the F (w)? You’ll need to find the
Hessian of F , i.e. ∇2F (w) ∈ Rd×d. Using this information, what step sizes does the
descent lemma tell us must decrease the objective?
Finally, fill out the function compute l smoothness constant which only takes the ma-
trix of features X ∈ Rd×d and outputs a scalar L ∈ R. You may find np.linalg.eigvals

useful. Apply compute l smoothness constant to your dataset that you experimented
with in Problem 2(h). Briefly discuss how this result relates to what you saw in Problem
2(h). Remember that the theorem only says something about η ≤ 1/L.
Submission: Submit Python code for compute l smoothness constant along with the
written answers to the questions above.

DS-GA 1003 (Problem Set 2) Page 9



Problem 3: Ridge Regression (25 Points)

We are again in the linear regression setup with squared loss described in lecture and in
Problem 2. Recall from class that one of our main issues in machine learning is ensuring the
estimation error and approximation error for our problem are both small. For a hypothesis
class H, let the empirical risk minimizer (ERM) be

ĥn ∈ argmin
h∈H

1

n

n∑
i=1

ℓ(h(x(i)), y(i)))

and let the risk minimizer be

h∗
H ∈ argmin

h∈H
E[ℓ(h(x), y)].

The estimation error is the difference between the risks of the ERM and the risk minimizer

R(ĥn)−R(h∗
H).

Typically, we can decrease this quantity by getting more data. If that’s not an option, then
a strategy that sometimes decreases this quantity is decreasing the “size” or “complexity” of
H. Intuitively, we might expect this to control this gap because limiting the options in H for
our ERM may exclude hypotheses that overfit to the noise in the training data. Remember:
for most problems there can be many ERMs (so a “large” H might allow you to choose one
that won’t generalize well)! Regularization is a general-purpose term that describes ways to
reduce model complexity.

We will hope that decreasing the “complexity” of H does not hurt our approximation error
too much (or at all). The approximation error is the difference in risk between the best
hypothesis we can find in our class H and the best possible function anyone could ever
produce for our problem (the Bayes hypothesis):

R(h∗
H)−R(h∗).

In this problem, we will employ ℓ2-regularization (otherwise known as ridge regression)
of linear regression as a tactic to decrease estimation error quicker than we can increase
approximation error. That is, we will use regularization to try to prevent overfitting.

Recall from class that the ℓ2-regularized linear regression (a.k.a. ridge regression) objective
function is

F (w) =
1

n

n∑
i=1

(w⊤x(i) − y(i))2 + λ∥w∥2,

where λ ≥ 0 is known as the regularization parameter. We will assume that the above
formulation applies the “dummy 1” trick so the bias term w0 is getting regularized as well
(we will address this later). Without loss of generality, we’ll just assume that w ∈ Rd includes
w0 already.

DS-GA 1003 (Problem Set 2) Page 10



Just as in Problem Set 1, we can compute the closed form solution for ridge regression. We
will prove another useful lemma from linear algebra (this should be compared to why we
needed the lemma rank(X) = rank(X⊤X) in un-regularized linear regression). One way to
interpret the following lemma is that perturbing a matrix with λI for positive λ gets rid of
linear dependencies.

Problem 3(a) (2 points)

Prove that, for any matrix X ∈ Rn×d and λ ∈ R, the matrix X⊤X + λI is always
invertible if λ > 0.
Hint: You may find that analyzing u⊤(X⊤X + λI)u for an arbitrary nonzero u ∈ Rd is
useful. You may also use the fact that any positive definite matrix is invertible.

Using Problem 3(a), we can prove the closed form solution to ridge regression in a similar
way to how we showed the closed form solution to unregularized linear regression in Problem
Set 1.

Problem 3(b) (3 points)

Let λ > 0. Using Problem 3(a), prove that for any X ∈ Rn×d, the closed form solution
to the minimization problem

ŵ ∈ argmin
w∈Rd

n∑
i=1

(w⊤x(i) − y(i))2 + λ∥w∥2

(where we took out the 1/n for convenience) is given by

ŵ = (X⊤X + λI)−1X⊤y.

Don’t forget to verify using calculus that this is indeed the minimizer. You will need to
use the matrix-vector form of the objective to solve this.
Compare this to the closed form solution of unregularized linear regression. What is the
difference with the conditions on X you need for ridge regression vs. unregularized linear
regression?

Problem 3(a) and Problem 3(b) show that just as in (unregularized) linear regression, find-
ing a closed form solution to the minimization problem can be done via calculus. As you
now know, however, in machine learning, we like applying our bread and butter algorithm,
gradient descent, to minimize differentiable objectives.

Problem 3(c) (2 points)

Write down the gradient descent step updating w(t) for ridge regression (given by the
F (w) above) in matrix-vector form. Don’t forget the 1/n term in this case!

DS-GA 1003 (Problem Set 2) Page 11



Problem 3(d) (3 points)

Implement compute regularized square loss gradient. This function should take
X, y, w and the regularization parameter λ. It should output the gradient, ∇F (w) ∈ Rd.
Submission: Submit your Python code for compute regularized square loss gradient.

Now that we have a function that computes the gradient, we can implement gradient descent
just as we did in Problem 2.

Problem 3(e) (2 points)

Implement regularized grad descent for ridge regression. It should take in X ∈ Rn×d

and y ∈ Rn, with optional parameters for the step size η > 0, the number of steps to
stop at, and the regularization parameter λ. It should output two arrays: one is for the
history of the w values w(1), . . . , w(T ), and one is for the history of the objective values
F (w(1)), . . . , F (w(T ))
Submission: Submit your Python code for regularized grad descent.

For regression problems, you may prefer to leave the bias term unregularized. One approach
is to change F (w) so that the bias is separated out from the other parameters and left
unregularized. Another approach that can achieve approximately the same thing is to use a
very large number B, rather than 1 for the extra bias dimension appended to the x.

Problem 3(f) (3 points)

Explain why making B large decreases the effective regularization on the bias term.
Explain how we can make the regularization as weak as we like on the bias term (though
not exactly zero). A formal proof is not needed; just consider what happens when one
varies B.

Up until this point, we have only considered the empirical risk, or the loss of our hypotheses
on our training set. When performing optimization, this is the quantity we focus on making
small. However, our ultimate goal is, of course, performing well on unseen data, or minimizing
our true risk. With squared loss and linear regression, this is:

R(w) = E(x,y)∼PX×Y [(w
⊤x− y)2]

Of course, we don’t ever know what the true distribution PX×Y is in a machine learning
problem, so we estimate the true risk with an i.i.d. test set that is separate from our training
set. Denoting our test set as (x̃(1), ỹ(1)), . . . , (x̃(m), ỹ(m)), we estimate

R(w) = E(x,y)∼PX×Y [(w
⊤x− y)2] ≈ 1

m

m∑
j=1

(w⊤x̃(j) − ỹ(j)).

Remember that whenever we are calculating the test or validation error of w, we are approx-
imating the true risk with an separate i.i.d. sample.

DS-GA 1003 (Problem Set 2) Page 12



Problem 3(g) (5 points)

Now fix B = 1 (it is fine to regularize the bias term in this problem) and η = 0.5. Find
the ŵλ that minimizes F (w) for a range of λ using gradient descent. Plot the average
square loss on the training set and the test set (the original, un-regularized objectives)
as a function of λ (your plot should have two curves) for λ in np.logspace(-7, -1,

num=30). You should have log(λ) on your x-axis rather than λ.
Your goal is to find λ that gives the minimum average square loss on the test set. Report
that optimal λ. It’s hard to predict what λ should be, so you should start your search very
broadly, looking over several orders of magnitude. Begin with the λ in np.logspace(-7,

-1, num=30). Once you can see a range that works better, keep zooming in. If you’d
like, you can use sklearn to help with this hyperparameter search.
Submission: The plot of log(λ) vs. average square loss for training and test and your
optimal λ value from experimenting. We will accept any λ that is around the same order
of magnitude (within 10 times) the optimal λ.

Problem 3(h) (5 points)

Which ŵλ would you select for deployment? You do not need to report the coefficients;
just state which ŵλ you would then report to your boss after this experiment as the most
likely to do well on future data from the same distribution. This is not a trick question!

DS-GA 1003 (Problem Set 2) Page 13



Problem 4: Stochastic Gradient Descent (25 Points)

When the training set is very large, evaluating the gradient of the objective function can
take a long time, since it requires looking at each training example to take a single gradient
step. When the objective function takes the form of an average of many values, such as

F (w) =
1

n

n∑
i=1

fi(w)

(as it does in the empirical risk), stochastic gradient descent (SGD) can be very effective. In
SGD, rather than taking −∇F (w) as our step direction, we take −∇fi(w) for some i chosen
uniformly at random from {1, . . . , n}. The approximation is poor, but we will show it is
unbiased.

In machine learning applications, each fi(w) would be the loss on the ith example. In
practical implementations for ML, the data points are randomly shuffled, and then we
sweep through the whole training set one by one, and perform an update for each training
example individually. One pass through the data is called an epoch. Note that each epoch
of SGD touches as much data as a single step of batch gradient descent. You can use the
same ordering for each epoch, though optionally you could investigate whether reshuffling
after each epoch affects the convergence speed.

Problem 4(a) (3 points)

Show that the objective function

F (w) =
1

n

n∑
i=1

(
w⊤x(i) − y(i)

)2
+ λ∥w∥2

can be written in the form F (w) = 1
n

∑n
i=1 fi(w) by giving an expression for fi(w)

that makes the two expressions equivalent. This tells us we can perform SGD on our
regularized linear regression objective.

Recall from probability and statistics that an unbiased estimator is an estimator (a rule
for calculating a quantity given observed data) whose expectation is the true value of the
quantity being estimated. In the case of SGD, our “observed data” are the draws i ∈ [n] from
the uniform distribution over {1, . . . , n} at each step, which tells us a particular stochastic
gradient ∇fi(w) to draw.

DS-GA 1003 (Problem Set 2) Page 14



Problem 4(b) (5 points)

Prove that the stochastic gradient ∇fi(w) for i chosen uniformly at random from
{1, . . . , n} is an unbiased estimator of ∇F (w). That is, show that, for any w,

E[∇fi(w)] = ∇F (w).

It will be helpful to think about what the expectation on the left hand side is really over.
Hint: It will be notationally easier to prove this for a general F (w) = 1

n
fi(w) than

for the ridge regression objective. Of course, proving this in general means that the
ridge regression estimator is also unbiased, because ridge regression is a special case, as
Problem 4(a) shows.

Problem 4(c) (2 points)

Write down the update rule for w(t) in SGD for the ridge regression objective function.

Theoretically, we typically analyze SGD thinking of each stochastic gradient as sampled
uniformly at random as above. In practice, SGD is done in epochs. At the start of an
epoch, one typically shuffles the data. Then, an epoch goes through each of the n points in
the shuffled order. Therefore, one epoch goes touches exactly as much data as a single full
gradient descent step. On the next epoch, one typically reshuffles the data.

DS-GA 1003 (Problem Set 2) Page 15



Problem 4(d) (10 points)

Implement stochastic grad descent. Make sure you implement the epochs as stated
above. To shuffle data, np.random.permutation may help. Note that the skeleton code
takes in three options for eta for step t during gradient descent:

• If eta is a float, then gradient descent uses that float as the step size for every
iteration.

• If eta is the string "1/sqrt(t)", then use ηt = 1/
√
t.

• If eta is the string "1/t", then use ηt = 1/t.

Although SGD is done in epochs, each gradient step increases t by one. For instance, if
the dataset has n = 100 points and you are on the fifth datapoint of the second epoch,
then t = 105.
Also, make sure that the loss hist records the loss of the regularized objective. We will
be investigating the convergence rate of the optimization algorithm, so we care about the
objective function itself (which includes our regularization term), not our downstream
metric of risk.
We will not be implementing minibatches for this problem set, but, as an optional exer-
cise, you can generalize this code to accept minibatches instead of stochastic gradients
that are merely a single point.
Submission: Submit your Python code for stochastic grad descent

Finally, we will experiment with the convergence rate of SGD with different learning rates.
We will not be evaluating the risk on the test set; we are primarily concerned with the
performance of just the optimization problem itself.

DS-GA 1003 (Problem Set 2) Page 16



Problem 4(e) (5 points)

Set λ = 10−2 in ridge regression. Use SGD for 1000 epochs with the following five step
sizes:

1. Fixed step size η = 0.005.

2. Fixed step size η = 0.01.

3. Step size ηt = 0.1/
√
t.

4. Step size ηt = 0.1/t.

You can modify the code in stochastic grad descent to make the step sizes with c/
√
t

or c/t work however you’d like. For each step size rule, plot the value of the objective
function on the y-axis as a function of the epoch (or step number, if you prefer). The
y-axis should be on a logarithmic scale. There should be four curves on the plot. How
do the results compare? It’s possible that some of these rules will not converge.
You are encouraged to experiment and try out other learning rates to get a feel tweaking
learning rates for SGD.
Submission: Just submit the plot from the experiment.

DS-GA 1003 (Problem Set 2) Page 17


